


# REPORT TO HEALTH INFRASTRUCTURE

ON DETAILED (STAGE 2) SITE INVESTIGATION

FOR COOMA HOSPITAL KEY WORKER ACCOMMODATION DEVELOPMENT - STAGE 2

AT COOMA HOSPITAL, BENT STREET, COOMA, NSW

Date: 21 December 2022 Ref: E30596PTrpt3

# JKGeotechnics www.jkgeotechnics.com.au

T: +61 2 9888 5000 JK Geotechnics Pty Ltd ABN 17 003 550 801





Report prepared by:

Katrina Taylo

Associate Environmental Scientist

Report reviewed by:

Brendah Page Principal Associate | Environmental Scientist CEnvP SC



For and on behalf of JKG PO BOX 976 NORTH RYDE BC NSW 1670

#### **DOCUMENT REVISION RECORD**

| Report Reference | Report Status | Report Date      |
|------------------|---------------|------------------|
| E30596PTrpt3     | Final Report  | 21 December 2022 |
|                  |               |                  |
|                  |               |                  |
|                  |               |                  |

© Document copyright of JK Geotechnics

This report (which includes all attachments and annexures) has been prepared by JK Geotechnics (JKG) for its Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKG and its Client and is therefore subject to:

- a) JKG's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKG;
- c) The terms of contract between JKG and the Client, including terms limiting the liability of JKG.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKG which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKG does so entirely at their own risk and to the fullest extent permitted by law, JKG accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

At the Company's discretion, JKG may send a paper copy of this report for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence. The USER shall ascertain the accuracy and the suitability of this information for the purpose intended; reasonable effort is made at the time of assembling this information to ensure its integrity. The recipient is not authorised to modify the content of the information supplied without the prior written consent of JKG.



## **Executive Summary**

Health Infrastructure ('the client') commissioned JK Geotechnics (JKG) to undertake a Detailed (Stage 2) Site Investigation (DSI) for the proposed Cooma Hospital Key Worker Accommodation Development – Stage 2 at Cooma Hospital, Bent Street, Cooma, NSW ('the site'). The purpose of the investigation is to make an assessment of site contamination conditions to establish whether remediation is required in the context of the proposed development, with regards to Chapter 4 (Clause 4.6) of State Environmental Planning Policy (Resilience and Hazards) 20211 (formerly known as SEPP55). The site location is shown on Figure 1 and the site boundary is shown on Figure 2, attached in the appendices. The site is located in the central east section of the wider hospital property.

JKG's environmental division (Environmental Investigation Services - EIS) has previously undertaken an Environmental Site Assessment (ESA) of the wider hospital property. A summary of relevant information from this investigation has been included in Section 2. A Sampling Analysis Quality Plan (SAQP) was prepared for the DSI (Ref: E30596PT-SAQP2, dated 15 November 2022). The SAQP is attached in the appendices.

The proposed development for this stage of works includes construction of a two storey, 12 unit block with indoor and outdoor shared space, which is proposed to be positioned in the central east of the existing hospital property (refer to Figure 2). The development is to be utilised for worker accommodation. Selected development plans are provided in the appendices.

The primary aim of the DSI is to characterise the soil contamination conditions in order to assess site risks in relation to contamination and establish whether remediation is required. A secondary aim is to provide preliminary waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

The DSI objectives are to:

- Provide an appraisal of the past site use(s) based on a review of limited historical records;
- Assess the soil contamination conditions;
- Assess the potential risks posed by contamination to the receptors identified in the Conceptual Site Model (CSM);
- Provide a preliminary waste classification for the in-situ soil; and
- Assess whether the site is suitable or can be made suitable (via remediation) for the proposed development, from a contamination viewpoint; and
- Assess whether further intrusive investigation and/or remediation is required.

The scope of work included the following:

- Review of existing and new site information, including background and site history information from various sources outlined in the report;
- Review and update the CSM;
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The review of site information and a site inspection identified the following as potential contamination sources at the site: imported fill material; use of pesticides; and hazardous building materials in former site buildings (and in existing hospital buildings off-site).

Soil sampling for the DSI was undertaken from eight test pit locations across the site. Fill was encountered to depths of between approximately 0.4m below ground level (BGL) to 1.5mBGL and comprised silty clayey sand or silty sandy clay with inclusions of granite, igneous and quartz gravel, concrete, brick, and ceramic fragments, fibre cement fragments (FCF), clay nodules, sand, ash and root fibres. The fill was underlain by either natural residual soils and/or granite bedrock. Staining and odours were not identified during fieldwork. FCF/asbestos containing materials (ACM) was encountered in fill in one of the eight locations during fieldwork.



<sup>&</sup>lt;sup>1</sup> State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)



A selection of soil samples was analysed for the contaminants of potential concern (CoPC) identified in the CSM. Asbestos as ACM was encountered at a concentration that was above the health-based SAC in fill soil in one test pit (TP205). ACM was also encountered in one surficial FCF (FCF2).

Based on the Tier 1 risk assessment, the level of contamination identified at the site was assessed to pose a potential risk in the current site configuration and in the context of the proposed development. A Remediation Action Plan (RAP) is required to document the procedure for remediating the site. As a duty of care, and to meet the requirements under Clause 429 of the Work Health and Safety Regulation (2017), an Asbestos Management Plan (AMP) for asbestos in/on soil should be prepared and implemented.

Remediation of the site is required to address the asbestos contamination in fill. We consider that the site can be made suitable for the proposed development provided that the following recommendations are implemented:

- 1. Prepare an AMP (for asbestos in/on soil) to manage the site;
- 2. Preparation and implementation of a RAP; and
- 3. Preparation of a validation report on completion of remediation.

The preliminary waste classifications are documented in Section 9.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.



# **Table of Contents**

| 1  | INTRO   | DUCTION                                                            | 1  |
|----|---------|--------------------------------------------------------------------|----|
|    | 1.1     | PROPOSED DEVELOPMENT DETAILS                                       | 1  |
|    | 1.2     | AIMS AND OBJECTIVES                                                | 1  |
|    | 1.3     | SCOPE OF WORK                                                      | 2  |
| 2  | SITE II | NFORMATION                                                         | 3  |
|    | 2.1     | Previous Investigations                                            | 3  |
|    | 2.2     | SITE IDENTIFICATION                                                | 3  |
|    | 2.3     | SITE LOCATION AND REGIONAL SETTING                                 | 4  |
|    | 2.4     | TOPOGRAPHY                                                         | 4  |
|    | 2.5     | SITE DESCRIPTION SUMMARY                                           | 4  |
|    | 2.6     | UNDERGROUND SERVICES                                               | 6  |
| 3  | SUMN    | IARY OF GEOLOGY AND HYDROGEOLOGY                                   | 7  |
|    | 3.1     | REGIONAL GEOLOGY AND SOIL/BEDROCK CONDITIONS                       | 7  |
| 4  | SITE H  | ISTORY INFORMATION                                                 | 8  |
|    | 4.1     | REVIEW OF HISTORICAL AERIAL PHOTOGRAPHS                            | 8  |
|    | 4.2     | REVIEW OF HISTORICAL LAND TITLE RECORDS                            | 9  |
|    | 4.3     | NSW EPA AND DEPARTMENT OF DEFENCE RECORDS                          | 9  |
|    | 4.4     | HISTORICAL BUSINESS DIRECTORY AND ADDITIONAL LOTSEARCH INFORMATION | 10 |
|    | 4.5     | SUMMARY OF SITE HISTORY INFORMATION                                | 11 |
|    | 4.6     | INTEGRITY OF SITE HISTORY INFORMATION                              | 12 |
| 5  | SUMN    | IARY OF CONCEPTUAL SITE MODEL                                      | 13 |
| 6  | SUMN    | IARY SAMPLING, ANALYSIS AND QUALITY PLAN                           | 14 |
|    | 6.1     | LABORATORY ANALYSIS                                                | 14 |
| 7  | SITE A  | SSESSMENT CRITERIA (SAC)                                           | 15 |
|    | 7.1     | Soil                                                               | 15 |
| 8  | RESUL   | TS                                                                 | 18 |
|    | 8.1     | SUMMARY OF DATA (QA/QC) EVALUATION                                 | 18 |
|    | 8.2     | SUBSURFACE CONDITIONS                                              | 18 |
|    | 8.3     | FIELD SCREENING                                                    | 18 |
|    | 8.4     | SOIL LABORATORY RESULTS                                            | 19 |
| 9  | PRELI   | MINARY WASTE CLASSIFICATION ASSESSMENT                             | 22 |
|    | 9.1     | WASTE CLASSIFICATION OF FILL                                       | 22 |
|    | 9.2     | CLASSIFICATION OF NATURAL SOIL AND BEDROCK                         | 22 |
| 10 | DISCU   | SSION                                                              | 23 |
|    | 10.1    | CONTAMINATION SOURCES/AEC AND POTENTIAL FOR SITE CONTAMINATION     | 23 |
|    | 10.2    | TIER 1 RISK ASSESSMENT AND REVIEW OF CSM                           | 23 |
|    | 10.3    | DECISION STATEMENTS                                                | 24 |
|    | 10.4    | DATA GAPS                                                          | 25 |

#### 11 CONCLUSIONS AND RECOMMENDATIONS

#### 12 LIMITATIONS

## **List of Tables**

| Table 2-1: Site Identification                                                              | 3  |
|---------------------------------------------------------------------------------------------|----|
| Table 4-1: Summary of Historical Aerial Photographs                                         | 8  |
| Table 4-2: NSW EPA and Department of Defence Records                                        | 9  |
| Table 4-3: Historical Business Directory and other Records                                  | 10 |
| Table 4-4: Summary of Historical Land Uses / Activities                                     | 11 |
| Table 5-1: Review of CSM                                                                    | 13 |
| Table 6-1: Laboratory Details                                                               | 14 |
| Table 7-1: Details for Asbestos SAC                                                         | 15 |
| Table 7-2: Waste Categories                                                                 | 16 |
| Table 8-1: Summary of Subsurface Conditions                                                 | 18 |
| Table 8-2: Summary of Field Screening                                                       | 18 |
| Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological) | 19 |
| Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria               | 20 |
| Table 8-5: Summary of Soil Laboratory Results Compared to TCLP Criteria                     | 21 |
|                                                                                             |    |

## Attachments

vi

Appendix A: Report Figures Appendix B: Site Information and Site History Information

Appendix C: Laboratory Results Summary Tables

Appendix D: Test Pit Logs

Appendix E: Laboratory Report(s) & COC Documents

Appendix F: Report Explanatory Notes

Appendix G: Data (QA/QC) Evaluation

- Appendix H: Sampling, Analysis and Quality Plan (SAQP)
- Appendix I: Guidelines and Reference Documents

# **JK**Geotechnics



26 27



# Abbreviations

| Ambient Background Concentrations                                                     | ABC          |
|---------------------------------------------------------------------------------------|--------------|
| Added Contaminant Limits                                                              | ACL          |
| Asbestos Containing Material<br>Area of Environmental Concern                         | ACM<br>AEC   |
| Australian Height Datum                                                               | AHD          |
| Acid Sulfate Soil                                                                     | AND          |
| Below Ground Level                                                                    | BGL          |
| Benzo(a)pyrene Toxicity Equivalent Factor                                             | BaP TEQ      |
| Benzene, Toluene, Ethylbenzene, Xylene                                                | BTEX         |
| Cation Exchange Capacity                                                              | CEC          |
| Contaminated Land Management                                                          | CLM          |
| Contaminant(s) of Potential Concern                                                   | CoPC         |
| Chain of Custody                                                                      | COC          |
| Conceptual Site Model                                                                 | CSM          |
| Dial Before You Dig                                                                   | DBYD         |
| Data Quality Indicator                                                                | DQI          |
| Data Quality Objective                                                                | DQO          |
| Detailed (Stage 2) Site Investigation                                                 | DSI          |
| Ecological Investigation Level                                                        | EIL          |
| Ecological Screening Level                                                            | ESL          |
| Environment Protection Authority                                                      | EPA          |
| Health Investigation Level                                                            | HILs         |
| Health Screening Level                                                                | HSL          |
| International Organisation of Standardisation                                         | ISO          |
| JK Environments                                                                       | JKG          |
| Lab Control Spike                                                                     | LCS          |
| Light Non-Aqueous Phase Liquid                                                        | LNAPL<br>MGA |
| Map Grid of Australia<br>National Association of Testing Authorities                  | NATA         |
| National Association of Testing Authomas<br>National Environmental Protection Measure | NEPM         |
| Organochlorine Pesticides                                                             | OCP          |
| Organophosphate Pesticides                                                            | OPP          |
| Polycyclic Aromatic Hydrocarbons                                                      | РАН          |
| Polychlorinated Biphenyls                                                             | PCBs         |
| Photo-ionisation Detector                                                             | PID          |
| Protection of the Environment Operations                                              | POEO         |
| Practical Quantitation Limit                                                          | PQL          |
| Quality Assurance                                                                     | QA           |
| Quality Control                                                                       | QC           |
| Remediation Action Plan                                                               | RAP          |
| Relative Percentage Difference                                                        | RPD          |
| Site Assessment Criteria                                                              | SAC          |
| Sampling, Analysis and Quality Plan                                                   | SAQP         |
| State Environmental Planning Policy                                                   | SEPP         |
| Site Specific Assessment                                                              | SSA          |
| Source, Pathway, Receptor                                                             | SPR          |
| Specific Contamination Concentration                                                  | SCC          |
| Standard Penetration Test                                                             | SPT          |
| Trip Blank<br>Total Resource blo Hydrocarbons                                         | ТВ           |
| Total Recoverable Hydrocarbons                                                        | TRH<br>TS    |
| Trip Spike<br>Upper Confidence Limit                                                  | UCL          |
| Volatile Organic Compounds                                                            | VOC          |
|                                                                                       | 100          |

# **JK**Geotechnics



%w/w

| WHO<br>WHS |
|------------|
|            |
| mBGL       |
| m          |
| mg/kg      |
| mg/L       |
| ppm        |
| %          |
|            |

Percentage weight for weight

# **JK**Geotechnics



### 1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Geotechnics (JKG) to undertake a Detailed (Stage 2) Site Investigation (DSI) for the proposed Cooma Hospital Key Worker Accommodation Development – Stage 2 at Cooma Hospital, Bent Street, Cooma, NSW ('the site'). The purpose of the investigation is to make an assessment of site contamination conditions to establish whether remediation is required in the context of the proposed development, with regards to Chapter 4 (Clause 4.6) of State Environmental Planning Policy (Resilience and Hazards) 2021<sup>2</sup> (formerly known as SEPP55).

The site location is shown on Figure 1 and the site boundary is shown on Figure 2, attached in the appendices. The site is located in the central east section of the wider hospital property.

JKG's environmental division (Environmental Investigation Services - EIS) has previously undertaken an Environmental Site Assessment (ESA) of the wider hospital property. A summary of relevant information from this investigation has been included in Section 2.

A Sampling Analysis Quality Plan (SAQP) was prepared for the DSI (Ref: E30596PT-SAQP2, dated 15 November 2022)<sup>3</sup>. The SAQP is attached in the appendices.

### 1.1 Proposed Development Details

The proposed development for this stage of works includes construction of a two storey, 12 unit block with indoor and outdoor shared space, which is proposed to be positioned in the central east of the existing hospital property (refer to Figure 2). The development is to be utilised for worker accommodation.

Selected development plans are provided in the appendices.

#### 1.2 Aims and Objectives

The primary aim of the DSI is to characterise the soil contamination conditions in order to assess site risks in relation to contamination and establish whether remediation is required. A secondary aim is to provide preliminary waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

The DSI objectives are to:

- Provide an appraisal of the past site use(s) based on a review of limited historical records;
- Assess the soil contamination conditions;
- Assess the potential risks posed by contamination to the receptors identified in the Conceptual Site Model (CSM);
- Provide a preliminary waste classification for the in-situ soil; and



<sup>&</sup>lt;sup>2</sup> State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

<sup>&</sup>lt;sup>3</sup> JKG, (2022). Report to Health Infrastructure on Sampling, Analysis and Quality Plan (SAQP) for Detailed (Stage 2) Site Investigation at Key Worker Accommodation Development Stage 2, Cooma Hospital, Bent Street, Cooma, NSW. (Report ref: E30596PT-SAQP2, dated 15 November 2022) (referred to as SAQP)



- Assess whether the site is suitable or can be made suitable (via remediation) for the proposed development, from a contamination viewpoint; and
- Assess whether further intrusive investigation and/or remediation is required.

#### 1.3 Scope of Work

The DSI was prepared generally in accordance with a JKG proposal (Ref: EP57659PT) of 3 November 2022 and written acceptance from the client of 14 November 2022 (Ref: HI22443, Purchase Order 44981103). The scope of work included the following:

- Review of existing and new site information, including background and site history information from various sources outlined in the report;
- Review and update the CSM;
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work included review of the existing project information and preparation of an SAQP with regards to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)<sup>4</sup>, SEPP Resilience and Hazards 2021 and other guidelines made under or with regards to the Contaminated Land Management Act (1997)<sup>5</sup>. A list of reference documents/guidelines is included in the appendices.



<sup>&</sup>lt;sup>4</sup> National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

<sup>&</sup>lt;sup>5</sup> Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)



#### 2 SITE INFORMATION

#### 2.1 Previous Investigations

We undertook an Environmental Site Assessment (ESA) across the wider hospital property (including the site), in 2017. The ESA included a review of site history information and soil sampling from 40 borehole locations across the wider hospital property, including one location within the site. Fill (i.e. historically imported soils, or soils placed during prior earthworks) in these locations was indicated to be >0.32m in depth.

The ESA identified the following potential contamination sources/AEC relevant to the proposed development area that was investigated:

- 1. Fill material (imported material);
- 2. Use of pesticides; and
- 3. Hazardous building materials in existing and former buildings.

The ESA did not encounter elevated concentrations of the contaminants of concern in the soil samples analysed for the investigation and all results were below the SAC. The report concluded that the risk posed by the AEC to the receptors was relatively low. At the time of the ESA, the wider hospital was considered to be suitable for the proposed hospital redevelopment, provided that:

- 1. The environmental consultant was notified of any unexpected finds (e.g. buried structures, fibre cement fragments, discoloured or odorous soil etc) encountered between sampling locations (particularly beneath buildings) so that appropriate action could be taken; and
- 2. All hazardous materials (e.g. asbestos cement) were removed from buildings/structures prior to demolition.

It is also noted that a Lotsearch report was purchase in September 2022 for the Stage 1 development located approximately 60m to the north of the site on the wider hospital property. Given the proximity of the site to the Stage 1 area, information presented in the Lotsearch report has been considered and documented throughout the report as it is applicable to the site.

#### 2.2 Site Identification

Table 2-1: Site Identification

| Site Address:                        | Bent Street, Cooma, NSW                                                           |
|--------------------------------------|-----------------------------------------------------------------------------------|
| Lot & Deposited Plan:                | Part of Lot 2 in DP1161366                                                        |
| Current Land Use:                    | Hospital grounds<br>(landscaped/paved areas outside existing building footprints) |
| Proposed Land Use:                   | Continued use as part of the hospital grounds for key worker accommodation        |
| Local Government Authority<br>(LGA): | Snowy Monaro regional Council                                                     |
| Current Zoning:                      | SP2: Infrastructure                                                               |



| Site Area (m <sup>2</sup> ) (approx.):                                  | 875                                             |
|-------------------------------------------------------------------------|-------------------------------------------------|
| Geographical Location<br>(decimal degrees) (approx. centre<br>of site): | Latitude: -36.2413421<br>Longitude: 149.1306185 |
| Site Plans:                                                             | Appendix A                                      |

#### 2.3 Site Location and Regional Setting

The site is located within the central east section of the wider hospital property which is within a predominantly residential area of Cooma. The site is bound by the Monaro Highway to the east and Victoria Street to the north. The site is located approximately 200m to the west of Cooma Creek.

### 2.4 Topography

The regional topography is characterised by undulating terrain that generally falls towards Cooma Creek to the north and north-east of the site and wider hospital property. The site slopes gently towards the east and parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

#### 2.5 Site Description Summary

A walkover inspection of the site was undertaken by JK Environments (JKE) personnel on 18 November 2022 (JKE is the environmental division of JKG). The inspection was limited to accessible areas of the site and immediate surrounds. Selected site photographs obtained during the inspection are attached in the appendices.

A summary of the inspection findings is outlined in the following subsections:

#### 2.5.1 Current Site Use and/or Indicators of Former Site Use

At the time of the inspection, the site comprised a section of grassed landscaped garden area in the hospital grounds. Additionally, in the west of the site, an area was slightly raised (0.2m to 0.4m) and a chain linked fence enclosed this area. This area was indicated to formerly be utilised for storage (gas bottles).

## 2.5.2 Buildings, Structures and Roads

Part of the western enclosed area of the site was concrete paved, otherwise the site was entirely unpaved and grass covered. Two large concrete plinths and metal framework was within the enclosed area (assumed to be former storage bays). To the west of the enclosed area was a section of asphaltic concrete paved carpark.



#### 2.5.3 Boundary Conditions, Soil Stability and Erosion

The boundary of the site was entirely unfenced. No evidence of erosion was observed during the site inspection. Some fill soil was visible at the interface between the paved area and grass covered areas.

#### 2.5.4 Presence of Drums/Chemical Storage and Waste

Several stacked fibre cement panels (suspected asbestos containing material) were stored in the enclosed area (refer to photographs in appendices).

No evidence of drums/chemicals or other waste were observed on the site during the site inspection.

#### 2.5.5 Evidence of Cut and Fill

Fill soils (i.e. containing brick and tile fragments and igneous gravels) were observed in areas of exposed soils during the site inspection (generally along the southern area). The level of the enclosed former storage area in comparison to the adjacent paved carpark (which was to the west) also indicated that some filling may have occurred on site.

#### 2.5.6 Visible or Olfactory Indicators of Contamination (odours, spills etc)

Several fibre cement fragments (FCF), assumed to contain asbestos, were encountered on the site surface during the inspection (refer to Figure 2 and the photographs in the appendices). It appeared these were associated with the soils, rather than damage to the stored fibre cement panels. Two representative samples of FCF were analysed (FCF1 and FCF2), results are discussed in Section 8.4.

No other visible or olfactory indicators of contamination were observed during the site inspection.

#### 2.5.7 Drainage and Services

Surface water at the site would be expected to infiltrate the unpaved site surface, with excess flow direction being towards to the east in keeping with the localised fall of the site.

#### 2.5.8 Sensitive Environments

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site or in the immediate surrounds.

#### 2.5.9 Landscaped Areas and Visible Signs of Plant Stress

The site was predominantly grass covered, with medium trees in a row along the east of the site and along the south. The vegetation appeared to be in good condition during the site inspection with no evidence of dieback or stress observed.



#### 2.5.10 Surrounding Land Use

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North grassed open space on the wider hospital property;
- South asphaltic concrete paved driveway and grassed open space on the wider hospital property;
- East grassed open space on the wider hospital property with the Monaro Highway and residential properties beyond; and
- West asphaltic concrete paved carpark on the wider hospital property.

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

#### 2.6 Underground Services

The 'Before You Dig' (BYD) plans and utilities plan provided by the client were reviewed in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Major services were not identified at the site that may act as preferential pathways for contamination migration.



### 3 SUMMARY OF GEOLOGY AND HYDROGEOLOGY

#### 3.1 Regional Geology and Soil/Bedrock Conditions

Regional geological maps indicated that the site is underlain by Cooma Granodiorite, which typically consists of biotite granite, foliated granite, leucogranite, diorite and tonalitic gneiss.

The previous investigations encountered shallow granite bedrock across the site and wider hospital property from depths of approximately 0.4mBGL to 2mBGL.

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation.

#### 3.1.1 Hydrogeology and Groundwater

Hydrogeological information reviewed for the investigation indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes fractured or fissured, extensive aquifers of low to moderate productivity. There was a total of 48 registered bores within 2km of the site. The nearest registered bore was 130m cross-gradient to the north-east of the site and was registered for water supply purposes. All other bores were over 775m from the site and none were down-gradient.

There is a reticulated water supply in the area and consumption of groundwater is not expected to occur.

Considering the local topography, groundwater is anticipated to flow towards the north and north-east in sympathy with the topography and towards the nearest down gradient water body.

The closest surface water body is Cooma Creek located approximately 200m to the east of the site at its closest point. This is down-gradient and is a potential receptor.



#### 4 SITE HISTORY INFORMATION

Existing and obtained site history information for the site has been summarised below and supporting information is attached in the appendices.

#### 4.1 Review of Historical Aerial Photographs

Historical aerial photographs were reviewed for the investigation. The information was sourced from the Lotsearch report. We have reviewed the photographs and summarised relevant information in the following table:

Table 4-1: Summary of Historical Aerial Photographs

| Year                         | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1944                         | <b>On-site:</b> The site appeared to be largely vacant and grassed, with some larger trees around the perimeter .                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | <b>Off-site:</b> A small structure/shed was located just beyond the northern corner of the site(it is possible that this structure encroached partially onto the site). The site was to the immediate south and east of the main hospital buildings. The Monaro Highway was visible further to the east. Several other small and large hospital out buildings were also present on the wider hospital property. The surrounds of the wider hospital appeared to comprise a mix of residential and vacant lots. |
| 1960                         | <b>On-site:</b> The western part of the site was occupied by part of a large, rectangular-shaped building. The eastern part of the site appeared grassed and vacant.                                                                                                                                                                                                                                                                                                                                           |
|                              | <b>Off-site:</b> Extensive development of the wider hospital property was visible with several large buildings now present to the west. Further residential development of the land to the east and north was also visible.                                                                                                                                                                                                                                                                                    |
| 1967<br>1977                 | The site and surrounding features appeared generally similar to the previous photograph.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1985                         | <b>On-site:</b> The site now appeared to be vacant with no visible buildings present. A row of three (gas) tanks was visible in the south-west section of the site.                                                                                                                                                                                                                                                                                                                                            |
|                              | <b>Off-site:</b> Redevelopment of the wider hospital property was visible with some buildings no longer present and new buildings and structures in their place (generally to the west of the site). Further residential development of the land to the east and north was also visible.                                                                                                                                                                                                                       |
| 1998                         | <b>On-site:</b> One larger (gas) tank was now present in the west of the site with a concrete/paved rectangular outline around this area (consistent with the enclosed storage area). The remainder of the site generally appeared to comprise grass covered landscaped areas including large trees along the south and several small trees in the east.                                                                                                                                                       |
|                              | <b>Off-site:</b> Some buildings to the north and north-west of the site were no longer present on the wider hospital property and paved car parks and internal roads were visible to the immediate west and south of the site.                                                                                                                                                                                                                                                                                 |
| 2002<br>2011<br>2016<br>2020 | The site and surrounding features appeared generally similar to the previous photograph.                                                                                                                                                                                                                                                                                                                                                                                                                       |



#### 4.2 Review of Historical Land Title Records

Historical land title records were reviewed for the investigation. The record search was undertaken by InfoTrack. Copies of the title records are attached in the appendices. The title records indicate the following:

- Between 1904 and 1962 the site was owned by numerous individuals as the Trustees for Crown Grant for a Hospital Site; and
- From 1962 to 2019 the site was owned by The Cooma District Hospital (now the Southern Area Health Service) and the Greater Southern Area Health Service; and
- In 2019 the Health Administration Corporation took ownership and is the current owner.

The historical land title records did not identify any particular land uses which could have resulted in significant contamination.

#### 4.3 NSW EPA and Department of Defence Records

A review of the NSW EPA and Department of Defence databases was undertaken for the PSI. Information from the following databases were sourced from the Lotsearch report:

- Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;
- Records of sites notified in accordance with the Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)<sup>6</sup>;
- Licensed activities under the Protection of the Environment Operations Act (1997)<sup>7</sup>;
- Sites being investigated under the NSW EPA per-and polyfluoroalkyl substances (PFAS) investigation program;
- Sites being investigated by the Department of Defence for PFAS contamination; and
- Sites being managed by the Department of Defence for PFAS contamination.

The search included the site and surrounding areas in the report buffer. A summary of the information is provided below:

| Records                                                                                      | On-site | Off-site                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Records under Section 58 of<br>the CLM Act 1997                                              | None    | One property (former shell service<br>station) was listed within the report<br>buffer. This property was located over<br>675m to the north and down/cross-<br>gradient of the site and is therefore not<br>considered to represent an off-site source<br>of contamination. |
| Records under the Duty to<br>Report Contamination under<br>Section 60 of the CLM Act<br>1997 | None    | There were six properties listed in the<br>report buffer. Five of these properties<br>were existing or former service stations<br>(including the one listed above) and one                                                                                                 |

Table 4-2: NSW EPA and Department of Defence Records



<sup>&</sup>lt;sup>6</sup> NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997.* (referred to as Duty to Report Contamination)

<sup>&</sup>lt;sup>7</sup> Protection of the Environment Operations Act 1997 (NSW) (referred to as POEO Act 1997)



| Records                                                                                           | On-site                                                                                                                                                                                                                                                                           | Off-site                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                   |                                                                                                                                                                                                                                                                                   | was a Mobil depot. All properties were<br>located over 675m to the north, north-<br>east or north-west and cross or down-<br>gradient of the site. Due to the distance<br>and topographical locations, these<br>properties are not considered to<br>represent off-site sources of<br>contamination.                                                 |
| Licences under the POEO Act<br>1997                                                               | The site and wider hospital property<br>are listed under a delicenced activity<br>for waste generation or storage.<br>This activity is considered unlikely to<br>pose a contamination risk to the site<br>or represent a source of<br>contamination in the context of the<br>DSI. | Current and historical licenses were<br>identified for several properties within<br>the report buffer, including railway<br>systems and the application of herbicides<br>along waterways. However, these<br>activities are considered unlikely to pose<br>a contamination risk to the site or<br>represent and off-site source of<br>contamination. |
| Records relating to the NSW<br>EPA PFAS Investigation<br>Program                                  | None                                                                                                                                                                                                                                                                              | None                                                                                                                                                                                                                                                                                                                                                |
| Records relating to the<br>Department of Defence PFAS<br>management and<br>investigation programs | None                                                                                                                                                                                                                                                                              | None                                                                                                                                                                                                                                                                                                                                                |

## 4.4 Historical Business Directory and Additional Lotsearch Information

Historical business records and other relevant information were reviewed for the investigation. The information was sourced from the Lotsearch report and summarised in the following table:

| Records                                                                                   | On-site | Off-site                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Historical dry cleaners, motor<br>garages and service stations                            | None    | One dry cleaner was listed within 125m<br>cross-gradient of the site and two motor<br>garages/service stations were listed within<br>435m down-gradient of the site. Due to<br>the distance and topographical locations,<br>these properties are not considered to<br>represent off-site sources of<br>contamination. |
| Other historical businesses<br>that could represent potential<br>sources of contamination | None    | None                                                                                                                                                                                                                                                                                                                  |
| National waste management site database                                                   | None    | None                                                                                                                                                                                                                                                                                                                  |



| Records                             | On-site                                                                                                                                                       | Off-site                                                                                                                                                                                                    |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National liquid fuel facilities     | None                                                                                                                                                          | There were five facilities listed in the report<br>buffer. These properties have been<br>previously discussed in Table 4-2 and are<br>not considered to represent offsite sources<br>of site contamination. |
| Mapped heritage items               | The site and wider hospital<br>property are listed as a Local<br>heritage item. This is not<br>considered to have any relevance<br>in the context of the DSI. | Various heritage items were mapped in the<br>report buffer. These are not considered to<br>have any relevance in the context of the DSI<br>objectives.                                                      |
| Mapped ecological constraints       | None                                                                                                                                                          | Various ecological items were mapped in<br>the report buffer. These are not considered<br>to have any relevance in the context of the<br>PSI objectives.                                                    |
| Mapped naturally occurring asbestos | None                                                                                                                                                          | None                                                                                                                                                                                                        |

#### 4.5 Summary of Site History Information

A time line summary of the historical land uses and activities is presented in the following table. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE.

Table 4-4: Summary of Historical Land Uses / Activities

| Year(s)            | On-site - Potential Land Use / Activities                                                                                                                                                                              | Off-site - Potential Land Use / Activities                                                                           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Circa 1858 to 1960 | <ul> <li>Vacant, landscaped portion of wider<br/>hospital property.</li> </ul>                                                                                                                                         | <ul> <li>Wider hospital property; and</li> <li>Predominantly residential properties,<br/>and vacant lots.</li> </ul> |
| 1944-1960          | <ul> <li>Construction of hospital building across<br/>west portion of the site;</li> <li>Use of hazardous building materials in<br/>structure; and</li> <li>Use of pesticides around building and<br/>site.</li> </ul> | <ul> <li>On-going hospital and residential land uses.</li> </ul>                                                     |
| 1960-2022          | <ul> <li>Demolition of building (1960-1985); and</li> <li>Minor filling across site for levelling<br/>purposes following demolition and for<br/>construction of the gas storage area.</li> </ul>                       | <ul> <li>On-going hospital and residential land uses.</li> </ul>                                                     |



#### 4.6 Integrity of Site History Information

The majority of the site history information was obtained from government organisations as outlined in the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. We have relied upon the Lotsearch report and have not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

Whilst the Lotsearch report was purchased for the Stage 1 Cooma Hospital development and shows the Stage 1 boundary, the information contained within the report is still relevant to the site (Stage 2) and has been interpreted accordingly for the purpose of this report.



#### 5 SUMMARY OF CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. An iteration of the CSM for the site is presented in the following table and is based on the site information (including the site inspection information) and the review of site history information including previous investigation findings.

| Contaminant source(s) and | Potential contamination sources/contaminating activities: historically imported fill                                                                                         |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| contaminants of concern   | soil; use of pesticides around and beneath buildings; and hazardous building                                                                                                 |  |  |
|                           | materials from former demolition works.                                                                                                                                      |  |  |
|                           | Contaminants of potential concern (CoPC):                                                                                                                                    |  |  |
|                           | Soil: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and                                                                                            |  |  |
|                           | zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons –                                                                                               |  |  |
|                           | TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic                                                                                                 |  |  |
|                           | hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.                                     |  |  |
|                           |                                                                                                                                                                              |  |  |
| Affected media            | For the purpose of the DSI, fill/soil. The potential for groundwater impacts to pose a                                                                                       |  |  |
|                           | risk to the receptors will be considered initially under the DSI scope based on the soil                                                                                     |  |  |
|                           | results (i.e. an assessment will be made regarding whether the soils represent a potential source of groundwater contamination via processes such as leaching). Site-        |  |  |
|                           | related sources of groundwater contamination have not been identified to date.                                                                                               |  |  |
|                           |                                                                                                                                                                              |  |  |
| Receptor identification   | Human receptors include site occupants/users (including adult workers, and adult                                                                                             |  |  |
|                           | and children visitors), construction workers and intrusive maintenance workers. Off-                                                                                         |  |  |
|                           | site human receptors include adjacent land users.                                                                                                                            |  |  |
|                           | Ecological receptors include terrestrial organisms and plants within unpaved areas                                                                                           |  |  |
|                           | (including any proposed landscaped areas).                                                                                                                                   |  |  |
| Exposure pathways and     | Potential exposure pathways relevant to the human receptors include ingestion,                                                                                               |  |  |
| mechanisms                | dermal absorption and inhalation of dust (all contaminants) and vapours (volatile                                                                                            |  |  |
|                           | TRH, BTEX and naphthalene [a PAH compound]). The potential for exposure would                                                                                                |  |  |
|                           | typically be associated with the construction and excavation works, and future use                                                                                           |  |  |
|                           | of the site. Potential exposure pathways for ecological receptors include primary                                                                                            |  |  |
|                           | contact and ingestion.                                                                                                                                                       |  |  |
|                           | Exposure during future site use could occur via direct contact with soil in unpaved                                                                                          |  |  |
|                           | areas such as gardens, inhalation of airborne asbestos fibres and dust during soil                                                                                           |  |  |
|                           | disturbance, or inhalation of vapours within enclosed spaces such as buildings.                                                                                              |  |  |
|                           | The following have been identified as potential exposure mechanisms for site                                                                                                 |  |  |
|                           | contamination:                                                                                                                                                               |  |  |
|                           | • Vapour intrusion into the proposed building (either from soil contamination or                                                                                             |  |  |
|                           | volatilisation of contaminants from groundwater); and                                                                                                                        |  |  |
|                           | <ul> <li>Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas<br/>and/or unpaved areas, or with soils/dust during construction works.</li> </ul> |  |  |
|                           | ana/or unpaved areas, or with sons/dust during construction works.                                                                                                           |  |  |



#### 6 SUMMARY SAMPLING, ANALYSIS AND QUALITY PLAN

JK prepared a stand-alone SAQP for the DSI, which is attached in Appendix H. The SAQP can be summarised as follows:

- Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2;
- Soil samples were obtained from eight test pit locations (TP201 to TP208), as shown on the attached Figures 2 and 3. The locations were generally positioned for site coverage due to access limitations imposed by the extent of underground services, although a grid-like sample spacing was attempted; and
- Soil samples were obtained using an excavator on 18 November 2022, with samples obtained directly from the test pit walls and/or the excavator bucket.

There were no substantial deviations to the SAQP. Please refer to the SAQP attached in Appendix H for further information.

#### 6.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

| Samples                                                                                                                             | Laboratory                                                                                        | Report Reference    |  |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|--|
| All primary soil samples and field<br>QA/QC samples, including soil intra-<br>laboratory duplicates, trip blanks<br>and trip spikes | Envirolab Services Pty Ltd NSW,<br>NATA Accreditation Number –<br>2901 (ISO/IEC 17025 compliance) | 311057 and 311057-A |  |
| Inter-laboratory duplicates for soil samples                                                                                        | Envirolab Services Pty Ltd VIC,<br>NATA Accreditation Number –<br>2901 (ISO/IEC 17025 compliance) | 34681               |  |

Table 6-1: Laboratory Details



#### 7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

#### 7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

#### 7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A). Whilst this is overly conservative given the proposed use is for worker accommodation which is expected to include adults and would be expected to occur over a shorter duration than a typical residential-type scenario, the approach is considered reasonable compared to applying the other available Tier 1 HILs;
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B).
   HSLs were calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)<sup>8</sup>; and
- Asbestos was assessed on the basis of presence/absence and against the HSL-A criteria. A summary of the asbestos criteria is provided in the table below:

| Guideline        | Applicability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Asbestos in Soil | <ul> <li>The HSL-A criteria were adopted for the assessment of asbestos in soil. The SAC adopted for asbestos were derived from the NEPM 2013 and are based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021)<sup>9</sup>. The SAC include the following: <ul> <li>No visible asbestos at the surface/in the top 10cm of soil;</li> <li>&lt;0.01% w/w bonded asbestos containing material (ACM) in soil; and</li> <li>&lt;0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil.</li> </ul> </li> <li>Concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):</li> </ul> |  |
|                  | % w/w asbestos in soil = <u>% asbestos content x bonded ACM (kg)</u><br>Soil volume (L) x soil density (kg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                  | However, we are of the opinion that the actual soil volume in a 10L bucket varies<br>considerably due to the presence of voids, particularly when assessing cohesive soils.<br>Therefore, each bucket sample was weighed using electronic scales and the above equation<br>was adjusted as follows (we note that the units have also converted to grams):                                                                                                                                                                                                                                                                                                                                                                                  |  |

#### Table 7-1: Details for Asbestos SAC

<sup>&</sup>lt;sup>8</sup> Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document* 

<sup>&</sup>lt;sup>9</sup> Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)



| Guideline | Applicability            |                                     |  |
|-----------|--------------------------|-------------------------------------|--|
|           | % w/w asbestos in soil = | % asbestos content x bonded ACM (g) |  |
|           |                          | Soil weight (g)                     |  |
|           |                          |                                     |  |

#### 7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines<sup>10</sup>;
- ESLs were adopted based on the soil type;
- EILs for selected metals in sample TP201 (0-0.1m) were calculated using the laboratory reported sitespecific parameters for pH and cation exchange capacity (CEC) of 7.5 and 42 respectively; and
- EILs for selected metals for all other samples were calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)<sup>11</sup>. This method is considered to be adequate for the Tier 1 screening.

#### 7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered.

#### 7.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)<sup>12</sup> as outlined in the following table:

| Category                                    | Description                                                                                                                                                                                                                                                                                          |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Solid Waste<br>(non-putrescible)    | <ul> <li>If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then<br/>Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as<br/>general solid waste; and</li> <li>If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste.</li> </ul> |
| Restricted Solid Waste<br>(non-putrescible) | <ul> <li>If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and</li> <li>If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste.</li> </ul>                                                                                                              |
| Hazardous Waste                             | <ul> <li>If SCC &gt; CT2 then TCLP not needed to classify the soil as hazardous waste; and</li> <li>If TCLP &gt; TCLP2 and/or SCC &gt; SCC2 then treat as hazardous waste.</li> </ul>                                                                                                                |

Table 7-2: Waste Categories



<sup>&</sup>lt;sup>10</sup> Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

 <sup>&</sup>lt;sup>11</sup> Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission
 <sup>12</sup> NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)



| Category                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Virgin Excavated Natural<br>Material (VENM) | <ul> <li>Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following:</li> <li>That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities;</li> <li>That does not contain sulfidic ores or other waste; and</li> <li>Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette.</li> </ul> |



#### 8 RESULTS

#### 8.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, we are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

#### 8.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the test pit logs attached in the appendices for further details.

| Profile      | Description                                                                                                                                                                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fill         | Fill was encountered at the surface in all test pits and extended to depths of approximately 0.4mBGL to 1.5mBGL.                                                                                                                              |
|              | The fill typically comprised silty clay and silty sandy gravel with inclusions of granite, igneous and quartz gravel, concrete, brick, and ceramic fragments, clay nodules, sand, ash and root fibres. FCF were encountered in fill in TP205. |
|              | No odours or staining were recorded in the fill material during field work. FCF/ACM was encountered in the fill material in TP205 during fieldwork.                                                                                           |
| Natural Soil | Silty clay residual soil was encountered beneath fill material in TP203, TP207 and TP208 from depths of approximately 0.4mBGL to 0.7mBGL.                                                                                                     |
|              | No odours or staining were recorded in the natural soils during field work.                                                                                                                                                                   |
| Bedrock      | Granite bedrock was encountered beneath the fill in TP201, TP202, TP204, TP205, and TP206 from depths of between 0.5mBGL to 1.5mBGL.                                                                                                          |
|              | Neither odours nor staining were recorded in the bedrock during fieldwork.                                                                                                                                                                    |
| Groundwater  | All test pits remained dry on completion of excavation and a short time after.                                                                                                                                                                |

Table 8-1: Summary of Subsurface Conditions

#### 8.3 Field Screening

A summary of the field screening results is presented in the following table:

| Aspect                                    | Details                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PID Screening of Soil<br>Samples for VOCs | PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. All results were between 0ppm and 3.4ppm equivalent isobutylene, which indicate a lack of significant PID detectable VOCs.                                                                                                                       |  |  |  |
| Bulk Screening for<br>Asbestos            | The bulk field screening results are summarised in the attached report Table S5. ACM was encountered in TP205 (0.1-0.6m) and TP205 (1.0-1.5m). The calculated asbestos concentrations of 0.0294%w/w and 0.0590%w/w were greater than the HSL-A SAC of 0.01%w/w. All remaining results were below the SAC (FCF was not encountered in any other bulk field screening samples). |  |  |  |

Table 8-2: Summary of Field Screening





#### 8.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

## 8.4.1 Human Health and Environmental (Ecological) Assessment

| Analyte                              | N  | Max. (mg/kg) | N> Human<br>Health SAC | N> Ecological<br>SAC | Comments |
|--------------------------------------|----|--------------|------------------------|----------------------|----------|
| Arsenic                              | 14 | <4           | 0                      | 0                    | -        |
| Cadmium                              | 14 | <0.4         | 0                      | NSL                  | -        |
| Chromium<br>(total)                  | 14 | 65           | 0                      | 0                    | -        |
| Copper                               | 14 | 59           | 0                      | 0                    | -        |
| Lead                                 | 14 | 60           | 0                      | 0                    | -        |
| Mercury                              | 14 | 0.4          | 0                      | NSL                  | -        |
| Nickel                               | 14 | 59           | 0                      | 0                    | -        |
| Zinc                                 | 14 | 97           | 0                      | 0                    | -        |
| Total PAHs                           | 14 | <0.05        | 0                      | NSL                  | -        |
| Benzo(a)pyrene                       | 14 | <0.05        | NSL                    | 0                    | -        |
| Carcinogenic<br>PAHs<br>(as BaP TEQ) | 14 | <0.5         | 0                      | NSL                  | -        |
| Naphthalene                          | 14 | <1           | 0                      | NSL                  | -        |
| DDT+DDE+DDD                          | 8  | <0.1         | 0                      | NSL                  | -        |
| DDT                                  | 8  | <0.1         | NSL                    | 0                    | -        |
| Aldrin and<br>dieldrin               | 8  | <0.1         | 0                      | NSL                  | -        |
| Chlordane                            | 8  | <0.1         | 0                      | NSL                  | -        |
| Heptachlor                           | 8  | <0.1         | 0                      | NSL                  | -        |
| Chlorpyrifos<br>(OPP)                | 8  | <0.1         | 0                      | NSL                  | -        |
| PCBs                                 | 8  | <0.1         | 0                      | NSL                  | -        |

Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

| Analyte                      | N  | Max. (mg/kg)            | N> Human<br>Health SAC | N> Ecological<br>SAC | Comments                                                                                                        |
|------------------------------|----|-------------------------|------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| TRH F1                       | 14 | <25                     | 0                      | 0                    | -                                                                                                               |
| TRH F2                       | 14 | <50                     | 0                      | 0                    | -                                                                                                               |
| TRH F3                       | 14 | <100                    | 0                      | 0                    | -                                                                                                               |
| TRH F4                       | 14 | <100                    | 0                      | 0                    | -                                                                                                               |
| Benzene                      | 14 | <25                     | 0                      | 0                    | -                                                                                                               |
| Toluene                      | 14 | <50                     | 0                      | 0                    | -                                                                                                               |
| Ethylbenzene                 | 14 | <100                    | 0                      | 0                    | -                                                                                                               |
| Xylenes                      | 14 | <100                    | 0                      | 0                    | -                                                                                                               |
| Asbestos (in<br>soil) (%w/w) | 8  | ACM >7mm =<br><0.01%w/w | 0                      | NA                   |                                                                                                                 |
|                              |    | AF/FA =<br><0.001%w/w   | 0                      |                      |                                                                                                                 |
| Asbestos in<br>fibre cement  | 5  | Asbestos<br>detected    | NSL                    | NSL                  | Asbestos was detected in three FCF<br>analysed, samples FCF2, TP205-FCF1<br>(0.1-0.6) and TP205-FCF3 (1.0-1.5). |

Notes:

N: Total number (primary samples) NSL: No set limit NL: Not limiting

#### 8.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Section 7.1.4. A summary of the results is presented in the following table:

| Analyte  | Ν  | N > CT Criteria | N > SCC Criteria | Comments |
|----------|----|-----------------|------------------|----------|
| Arsenic  | 14 | 0               | 0                | -        |
| Cadmium  | 14 | 0               | 0                | -        |
| Chromium | 14 | 0               | 0                | -        |
| Copper   | 14 | NSL             | NSL              | -        |
| Lead     | 14 | 0               | 0                | -        |
| Mercury  | 14 | 0               | 0                | -        |

Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria

1



| Analyte                                 | Ν  | N > CT Criteria | N > SCC Criteria | Comments                                                                                                                      |
|-----------------------------------------|----|-----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Nickel                                  | 14 | 1               | 0                | The nickel concentration exceeded the CT1 criterion in one fill soil sample collected from TP201 (0-0.1m).                    |
| Zinc                                    | 14 | NSL             | NSL              | -                                                                                                                             |
| TRH (C <sub>6</sub> -C <sub>9</sub> )   | 14 | 0               | 0                | -                                                                                                                             |
| TRH (C <sub>10</sub> -C <sub>36</sub> ) | 14 | 0               | 0                | -                                                                                                                             |
| BTEX                                    | 14 | 0               | 0                | -                                                                                                                             |
| Total PAHs                              | 14 | 0               | 0                | -                                                                                                                             |
| Benzo(a)pyrene                          | 14 | 0               | 0                | -                                                                                                                             |
| OCPs & OPPs                             | 8  | 0               | 0                | -                                                                                                                             |
| PCBs                                    | 8  | 0               | 0                | -                                                                                                                             |
| Asbestos in soil                        | 8  | -               | -                | Asbestos was not detected in any soil samples analysed.                                                                       |
| Asbestos in<br>material                 | 5  | -               | -                | Asbestos was detected in three of the FCF samples<br>analysed samples FCF2, TP205-FCF1 (0.1-0.6) and<br>TP205-FCF3 (1.0-1.5). |

N: Total number (primary samples)

NSL: No set limit

#### Table 8-5: Summary of Soil Laboratory Results Compared to TCLP Criteria

| Analyte | N | N > TCLP<br>Criteria | Comments                                                                               |
|---------|---|----------------------|----------------------------------------------------------------------------------------|
| Nickel  | 1 | 0                    | TCLP nickel analysis occurred on the sample that reported a nickel concentration >CT1. |

N: Total number (primary samples)



### 9 PRELIMINARY WASTE CLASSIFICATION ASSESSMENT

#### 9.1 Waste Classification of Fill

Based on the results of the waste classification assessment, and at the time of reporting, the fill material is assigned a preliminary classification of **General Solid Waste (non-putrescible) containing Special Waste (asbestos)**.

Once the excavation details/work methods and anticipated waste quantities are known, the requirements for further waste classification should be assessed and JKE should be contacted to discuss the requirements for any further inspections, analysis and/or reporting. The extent of sampling in fill has been comprehensive and we anticipate that confirmation of the above waste classification for fill may be limited to inspections of the site/waste during the works and/or preparation of a cover letter to document these inspections and the final waste quantity.

#### 9.2 Classification of Natural Soil and Bedrock

Based on the scope of work undertaken for this assessment, and at the time of reporting, JKE is of the opinion that the natural bedrock at the site would meet the definition of **VENM** for off-site disposal or re-use purposes. However, the VENM classification would need to be confirmed by validation sampling/analysis and an asbestos clearance, following removal of the overlying fill. VENM would be considered suitable for re-use on-site (from a contamination viewpoint), or alternatively, VENM could be beneficially re-used off-site.



#### 10 DISCUSSION

#### 10.1 Contamination Sources/AEC and Potential for Site Contamination

Based on the scope of work undertaken for this investigation, we identified the following potential contamination sources/AEC:

- 1. Fill material (imported material);
- 2. Use of pesticides around buildings and site; and
- 3. Hazardous building materials from former demolition works.

Considering the above, and based on a qualitative assessment of various lines of evidence as discussed throughout this report, we are of the opinion that there is a potential for site contamination. The soil data collected for the investigation is discussed further in the following subsection, as part of the Tier 1 risk assessment.

#### 10.2 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

#### 10.2.1 Soil

#### 10.2.1.1 Asbestos

Asbestos as ACM was detected in fill soil at concentrations that were above the SAC (refer to Figure 3). All visible FCF/ACM (excluding the stacked/stored fibre cement sheets) encountered during the site work was removed by JKE. The source of the asbestos is considered likely to be associated with either imported fill material which was encountered to varying depths across the site and/or waste generated during historical demolition activities at the site that was subsequently mixed in with the fill/soil matrix during previous site levelling works.

Demolition rubble and other anthropogenic inclusions were encountered in a majority of the test pits excavated for the DSI and as such asbestos impacts at the site are considered likely to be widespread in fill/soil (albeit, the asbestos appears largely to be present at concentrations below the SAC based on the data to date given that a SAC exceedance was only encountered in TP205).

As the site is predominantly unpaved and the ACM was encountered at the surface and in the shallow fill/soil, there is considered to be a potentially complete SPR linkage to human receptors under the current site configuration. As a duty of care, and to meet the requirements under Clause 429 of the Work Health and Safety Regulation (2017), an Asbestos Management Plan (AMP) (for asbestos in/on soil) should be prepared and implemented to manage the site until development occurs.



It is noted that the land use-based SAC for asbestos are not protective of human health in an occupational exposure scenario during construction/earthworks. Disturbance of fill containing asbestos will need to be managed appropriately during the construction process so that risks are low and acceptable.

Remediation of asbestos in/on soil will be required as part of the proposed development. In the context of the proposed development, it is anticipated that remediation of asbestos in/on soil would occur during construction as part of the earthworks, and this will be captured under the requirements of a Remediation Action Plan (RAP). Remediation of the asbestos must be confirmed via appropriate validation methods outlined in the RAP.

### 10.2.1.2 Other CoPC

Elevated concentrations of the other CoPC were not encountered above the adopted SAC in the soil samples analysed and therefore are not considered to pose a risk to the receptors at the concentrations reported to date. Organic CoPC were largely not detected above the PQLs and heavy metals concentrations were very low. These results were generally consistent with previous findings across the wider hospital property.

The DSI did not identify soil contamination that was deemed to pose a risk to groundwater and there were no historical point sources of groundwater contamination identified on site or in close proximity.

#### **10.3** Decision Statements

The decision statements are addressed below:

Does the historical information identify potential contamination sources/AEC at the site?

Yes, as noted in Section 10.1.

Are any results above the SAC?

Yes, asbestos (as ACM) was reported above the health-based SAC in fill/soil. ACM was also encountered at the ground surface.

Do potential risks associated with contamination exist, and if so, what are they?

Asbestos was assessed to pose a potential risk to current and future site users if adequate risk mitigation and management do not occur.

*Is further investigation / remediation required?* 

Yes. Remediation is required in relation to asbestos in fill.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?





We are of the opinion that the site can be made suitable for the proposed development outlined in Section 1.1, subject to remediation.

#### 10.4 Data Gaps

Technically, for delineation of known asbestos in soil, sampling should be undertaken at twice the minimum sampling density recommended in the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021)<sup>13</sup> as (endorsed in NEPM 2013). This data gap was only identified as a result of finding asbestos during the DSI.

Undertaking additional sampling to meet this density will not change the need for remediation of the site as there is already a SAC exceedance at one location and the fill containing building/demolition waste is widespread. Spatially, the occurrence of asbestos is also considered to be widespread based on the extent of fill impacted by demolition waste and the occurrence of surficial ACM/FCF in the south of the site and buried asbestos in TP205 in the more central section of the site. On this basis, additional works to address this data gap is not recommended.



<sup>&</sup>lt;sup>13</sup> Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)



#### 11 CONCLUSIONS AND RECOMMENDATIONS

The DSI included a review of site information, a site inspection, and soil sampling from eight test pit locations across the site. Imported fill material, use of pesticides, and hazardous building materials were identified as potential contamination sources at the site.

Fill was encountered to depths of between approximately 0.4m below ground level (BGL) to 1.5mBGL and comprised silty clayey sand or silty sandy clay with inclusions of granite, igneous and quartz gravel, concrete, brick, and ceramic fragments, fibre cement fragments (FCF), clay nodules, sand, ash and root fibres. The fill was underlain by either natural residual soils and/or granite bedrock. Staining and odours were not identified during fieldwork. FCF/asbestos containing materials (ACM) was encountered in one of the eight locations during fieldwork, and also at the ground surface in the southern area of the site.

A selection of soil samples was analysed for the contaminants of potential concern (CoPC) identified in the CSM. Asbestos as ACM was encountered above the health-based SAC in fill soil in one test pit (TP205). ACM was also encountered in one surficial FCF (FCF2).

As a duty of care, and to meet the requirements under Clause 429 of the Work Health and Safety Regulation (2017), an AMP (for asbestos in/on soil) should be prepared and implemented.

Based on the Tier 1 risk assessment, the level of contamination identified at the site was assessed to pose a potential risk in the current site configuration and in the context of the proposed development. A RAP is required to document the procedure for remediating the site.

Remediation of the site is required to address the asbestos contamination in fill. We consider that the site can be made suitable for the proposed development provided that the following recommendations are implemented:

- 1. Prepare an AMP (for asbestos in/on soil) to manage the site;
- 2. Preparation and implementation of a RAP; and
- 3. Preparation of a validation report on completion of remediation.

At this stage, we consider that, provided the above recommendations are addressed, there is no requirement to report any site contamination to the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015). This is to be reassessed following implementation of the recommendations.

JKG considers that the report objectives outlined in Section 1.2 have been addressed.



#### 12 LIMITATIONS

The report limitations are outlined below:

- JKG accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKG proposal; and terms of contract between JKG and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKG has not undertaken any verification process, except where specifically stated in the report;
- JKG has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKG accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKG have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKG should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.



# **Important Information About This Report**

These notes have been prepared by JKG to assist with the assessment and interpretation of this report.

#### The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKG proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKG will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKG to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

#### Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

#### This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

#### **Investigation Limitations**

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.



#### Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

#### Logs Should not be Separated from the Investigation Report

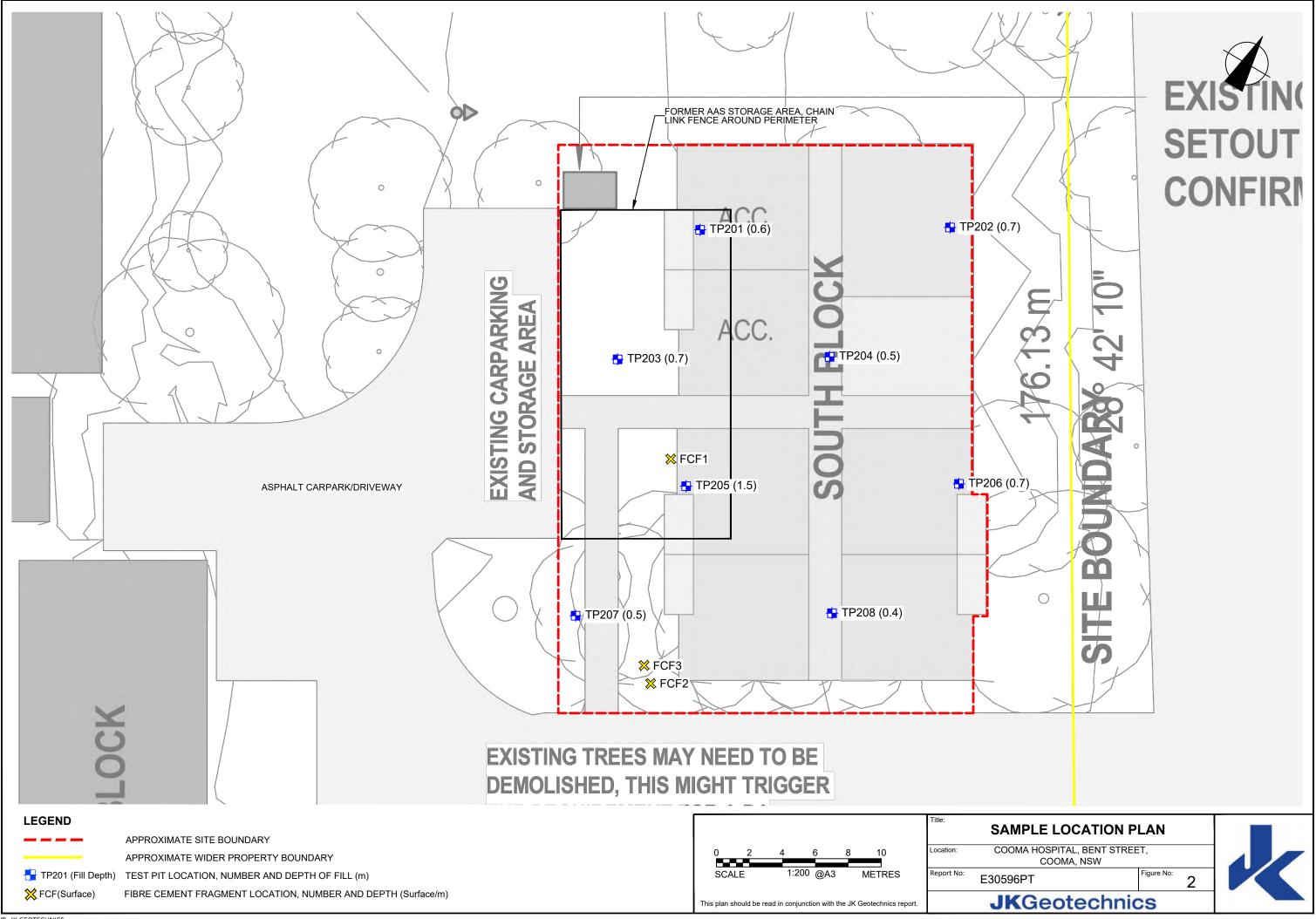
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

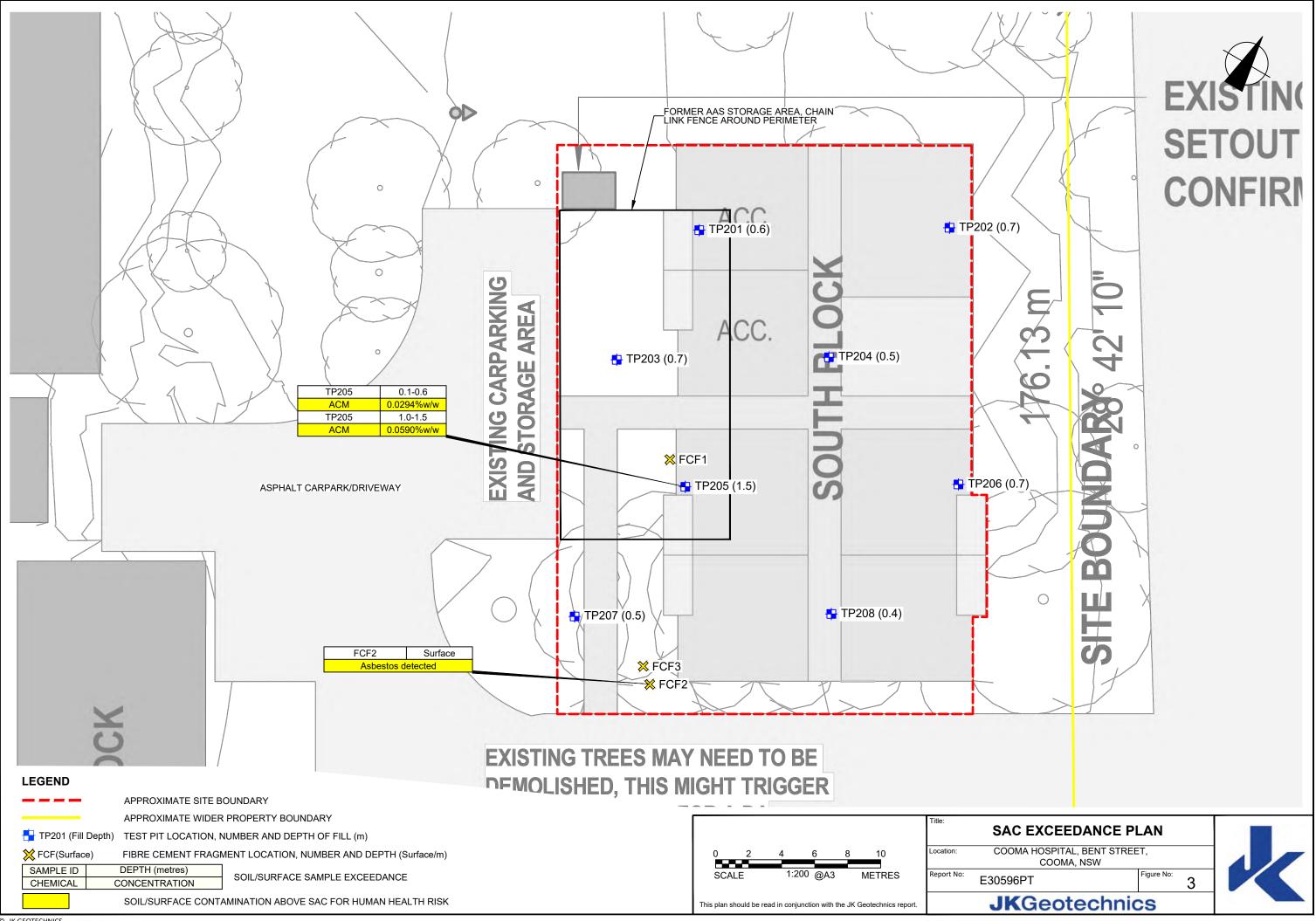
#### Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.




**Appendix A: Report Figures** 






This plan should be read in conjunction with the JK Geotechnics report.

© JK GEOTECHNICS



© JK GEOTECHNICS



© JK GEOTECHNICS



# Appendix B: Site Information and Site History Information

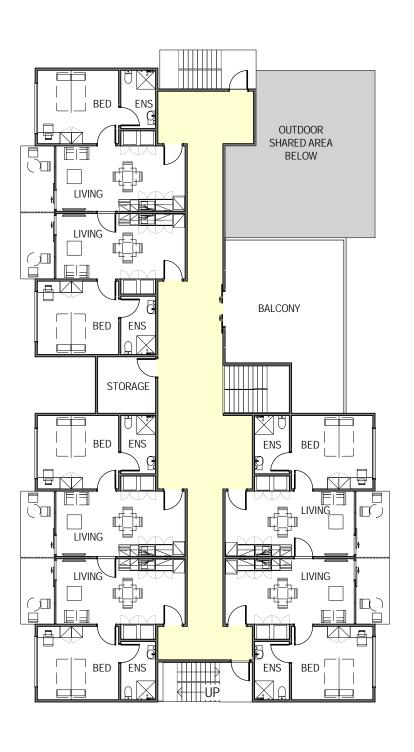


Proposed Development Plans





# **SOUTH BLOCK - GROUND**

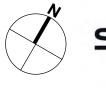

**COOMA KWA** 

Project Number 10599





# Proposed Cooma Stage 2




# **SOUTH BLOCK - LEVEL 01**

**COOMA KWA** 

Project Number 10599







# Proposed Cooma Stage 2



Site Photographs





Project Ref: E30596PT Site Address: Cooma Hospital, Bent Street, Cooma Selected Site Photos Dated: 18 November 2022



**Photograph 1:** Looking north through enclosed former storage area.

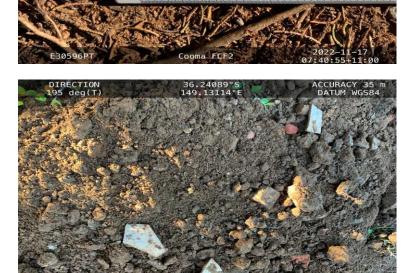


**Photograph 2:** Looking north east across site.



**Photograph 3:** Looking south from northwest of site across enclosed former storage area.






Project Ref: E30596PT Site Address: Cooma Hospital, Bent Street, Cooma Selected Site Photos Dated: 18 November 2022



**Photograph 4:** Stored moulded fibre cement sheets.

Photograph 5: FCF2 found in-situ.



Cooma TP205 Spoil 0

**Photograph 6:** Spoil from TP205 indicating brick, FCF and other anthropogenic inclusions.

E30596P





# Lotsearch Environmental Risk and Planning Report





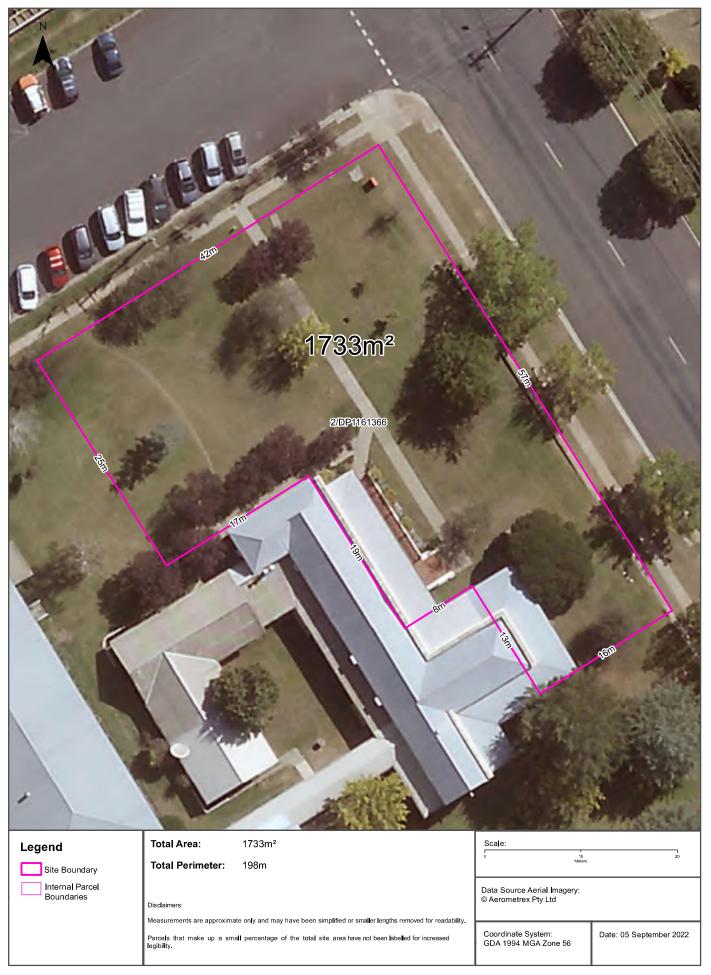
## Date: 05 Sep 2022 10:31:30 Reference: LS035920 EP Address: Cooma Hospital, Bent Street, Cooma, NSW 2630

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

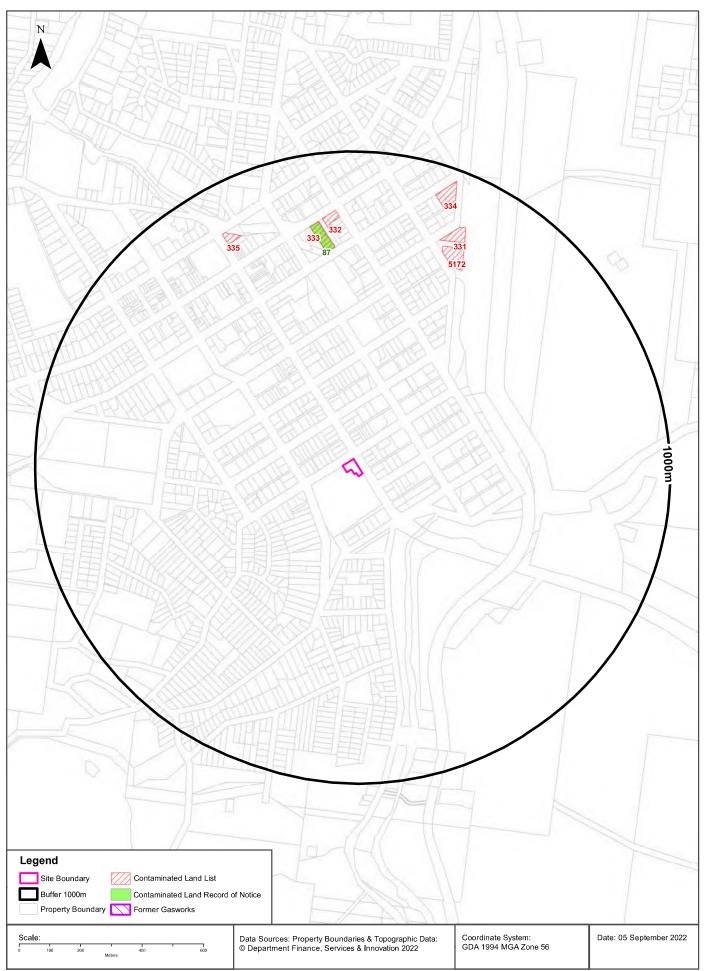
## **Dataset Listing**

Datasets contained within this report, detailing their source and data currency:


| Dataset Name                                                                                                | Custodian                                                | Supply<br>Date | Currency<br>Date | Update<br>Frequency | Dataset<br>Buffer<br>(m) |   | No.<br>Features<br>within<br>100m | No.<br>Features<br>within<br>Buffer |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|------------------|---------------------|--------------------------|---|-----------------------------------|-------------------------------------|
| Cadastre Boundaries                                                                                         | NSW Department of Customer<br>Service - Spatial Services | 17/06/2022     | 17/06/2022       | Quarterly           | -                        | - | -                                 | -                                   |
| Topographic Data                                                                                            | NSW Department of Customer<br>Service - Spatial Services | 22/08/2022     | 22/08/2022       | Annually            | -                        | - | -                                 | -                                   |
| List of NSW contaminated sites notified to EPA                                                              | Environment Protection Authority                         | 02/09/2022     | 10/08/2022       | Monthly             | 1000m                    | 0 | 0                                 | 6                                   |
| Contaminated Land Records of Notice                                                                         | Environment Protection Authority                         | 19/08/2022     | 19/08/2022       | Monthly             | 1000m                    | 0 | 0                                 | 1                                   |
| Former Gasworks                                                                                             | Environment Protection Authority                         | 02/09/2022     | 14/07/2021       | Quarterly           | 1000m                    | 0 | 0                                 | 0                                   |
| National Waste Management Facilities Database                                                               | Geoscience Australia                                     | 26/05/2022     | 07/03/2017       | Annually            | 1000m                    | 0 | 0                                 | 0                                   |
| National Liquid Fuel Facilities                                                                             | Geoscience Australia                                     | 23/08/2022     | 13/07/2012       | Annually            | 1000m                    | 0 | 0                                 | 5                                   |
| EPA PFAS Investigation Program                                                                              | Environment Protection Authority                         | 02/09/2022     | 14/07/2021       | Monthly             | 2000m                    | 0 | 0                                 | 0                                   |
| Defence PFAS Investigation &<br>Management Program - Investigation<br>Sites                                 | Department of Defence                                    | 02/09/2022     | 02/09/2022       | Monthly             | 2000m                    | 0 | 0                                 | 0                                   |
| Defence PFAS Investigation &<br>Management Program - Management<br>Sites                                    | Department of Defence                                    | 02/09/2022     | 02/09/2022       | Monthly             | 2000m                    | 0 | 0                                 | 0                                   |
| Airservices Australia National PFAS<br>Management Program                                                   | Airservices Australia                                    | 02/09/2022     | 02/09/2022       | Monthly             | 2000m                    | 0 | 0                                 | 0                                   |
| Defence 3 Year Regional<br>Contamination Investigation Program                                              | Department of Defence                                    | 02/09/2022     | 02/09/2022       | Quarterly           | 2000m                    | 0 | 0                                 | 0                                   |
| EPA Other Sites with Contamination Issues                                                                   | Environment Protection Authority                         | 16/02/2022     | 13/12/2018       | Annually            | 1000m                    | 0 | 0                                 | 0                                   |
| Licensed Activities under the POEO<br>Act 1997                                                              | Environment Protection Authority                         | 19/08/2022     | 19/08/2022       | Monthly             | 1000m                    | 0 | 0                                 | 1                                   |
| Delicensed POEO Activities still<br>regulated by the EPA                                                    | Environment Protection Authority                         | 19/08/2022     | 19/08/2022       | Monthly             | 1000m                    | 1 | 1                                 | 1                                   |
| Former POEO Licensed Activities now revoked or surrendered                                                  | Environment Protection Authority                         | 19/08/2022     | 19/08/2022       | Monthly             | 1000m                    | 0 | 0                                 | 3                                   |
| UBD Business Directories (Premise & Intersection Matches)                                                   | Hardie Grant                                             |                |                  | Not<br>required     | 150m                     | 2 | 6                                 | 16                                  |
| UBD Business Directories (Road & Area Matches)                                                              | Hardie Grant                                             |                |                  | Not<br>required     | 150m                     | - | 45                                | 167                                 |
| UBD Business Directory Dry Cleaners<br>& Motor Garages/Service Stations<br>(Premise & Intersection Matches) | Hardie Grant                                             |                |                  | Not<br>required     | 500m                     | 0 | 0                                 | 7                                   |
| UBD Business Directory Dry Cleaners<br>& Motor Garages/Service Stations<br>(Road & Area Matches)            | Hardie Grant                                             |                |                  | Not<br>required     | 500m                     | - | 3                                 | 8                                   |
| Points of Interest                                                                                          | NSW Department of Customer<br>Service - Spatial Services | 18/08/2022     | 18/08/2022       | Quarterly           | 1000m                    | 0 | 3                                 | 44                                  |
| Tanks (Areas)                                                                                               | NSW Department of Customer<br>Service - Spatial Services | 18/08/2022     | 18/08/2022       | Quarterly           | 1000m                    | 0 | 0                                 | 0                                   |
| Tanks (Points)                                                                                              | NSW Department of Customer<br>Service - Spatial Services | 18/08/2022     | 18/08/2022       | Quarterly           | 1000m                    | 0 | 0                                 | 3                                   |
| Major Easements                                                                                             | NSW Department of Customer<br>Service - Spatial Services | 29/08/2022     | 29/08/2022       | Quarterly           | 1000m                    | 0 | 0                                 | 8                                   |
| State Forest                                                                                                | Forestry Corporation of NSW                              | 16/08/2022     | 14/08/2022       | Annually            | 1000m                    | 0 | 0                                 | 0                                   |
| NSW National Parks and Wildlife Service Reserves                                                            | NSW Office of Environment & Heritage                     | 10/02/2022     | 31/12/2021       | Annually            | 1000m                    | 0 | 0                                 | 0                                   |
| Hydrogeology Map of Australia                                                                               | Commonwealth of Australia<br>(Geoscience Australia)      | 29/08/2022     | 19/08/2019       | Annually            | 1000m                    | 1 | 1                                 | 1                                   |
| Temporary Water Restriction (Botany<br>Sands Groundwater Source) Order<br>2018                              | NSW Department of Planning,<br>Industry and Environment  | 28/03/2022     | 23/02/2018       | Annually            | 1000m                    | 0 | 0                                 | 0                                   |
| National Groundwater Information<br>System (NGIS) Boreholes                                                 | Bureau of Meteorology; Water NSW                         | 24/01/2022     | 24/01/2022       | Annually            | 2000m                    | 0 | 0                                 | 48                                  |

| Dataset Name                                                                | Custodian                                                                            | Supply<br>Date | Currency<br>Date | Update<br>Frequency | Dataset<br>Buffer<br>(m) | No.<br>Features<br>On-site | No.<br>Features<br>within<br>100m | No.<br>Features<br>within<br>Buffer |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|------------------|---------------------|--------------------------|----------------------------|-----------------------------------|-------------------------------------|
| NSW Seamless Geology Single Layer:<br>Rock Units                            | Department of Regional NSW                                                           | 17/02/2022     | 01/05/2021       | Annually            | 1000m                    | 1                          | 1                                 | 3                                   |
| NSW Seamless Geology – Single<br>Layer: Trendlines                          | Department of Regional NSW                                                           | 17/02/2022     | 01/05/2021       | Annually            | 1000m                    | 0                          | 0                                 | 0                                   |
| NSW Seamless Geology – Single<br>Layer: Geological Boundaries and<br>Faults | Department of Regional NSW                                                           | 17/02/2022     | 01/05/2021       | Annually            | 1000m                    | 0                          | 0                                 | 0                                   |
| Naturally Occurring Asbestos Potential                                      | NSW Dept. of Industry, Resources & Energy                                            | 04/12/2015     | 24/09/2015       | Unknown             | 1000m                    | 0                          | 0                                 | 0                                   |
| Atlas of Australian Soils                                                   | Australian Bureau of Agriculture and<br>Resource Economics and Sciences<br>(ABARES)  | 19/05/2017     | 17/02/2011       | As<br>required      | 1000m                    | 1                          | 1                                 | 2                                   |
| Soil Landscapes of Central and<br>Eastern NSW                               | NSW Department of Planning,<br>Industry and Environment                              | 18/08/2022     | 27/07/2020       | Annually            | 1000m                    | 1                          | 2                                 | 5                                   |
| Environmental Planning Instrument<br>Acid Sulfate Soils                     | NSW Department of Planning,<br>Industry and Environment                              | 02/09/2022     | 12/08/2022       | Monthly             | 500m                     | 0                          | -                                 | -                                   |
| Atlas of Australian Acid Sulfate Soils                                      | CSIRO                                                                                | 19/01/2017     | 21/02/2013       | As<br>required      | 1000m                    | 1                          | 1                                 | 1                                   |
| Dryland Salinity - National Assessment                                      | National Land and Water Resources Audit                                              | 18/07/2014     | 12/05/2013       | None<br>planned     | 1000m                    | 0                          | 0                                 | 0                                   |
| Mining Subsidence Districts                                                 | NSW Department of Customer<br>Service - Subsidence Advisory NSW                      | 19/08/2021     | 05/08/2021       | Quarterly           | 1000m                    | 0                          | 0                                 | 0                                   |
| Current Mining Titles                                                       | NSW Department of Industry                                                           | 02/09/2022     | 02/09/2022       | Monthly             | 1000m                    | 0                          | 0                                 | 0                                   |
| Mining Title Applications                                                   | NSW Department of Industry                                                           | 02/09/2022     | 02/09/2022       | Monthly             | 1000m                    | 0                          | 0                                 | 0                                   |
| Historic Mining Titles                                                      | NSW Department of Industry                                                           | 02/09/2022     | 02/09/2022       | Monthly             | 1000m                    | 7                          | 7                                 | 11                                  |
| Environmental Planning Instrument<br>SEPP State Significant Precincts       | NSW Department of Planning,<br>Industry and Environment                              | 15/11/2021     | 07/12/2018       | Monthly             | 1000m                    | 0                          | 0                                 | 0                                   |
| Environmental Planning Instrument<br>Land Zoning                            | NSW Department of Planning,<br>Industry and Environment                              | 15/11/2021     | 05/11/2021       | Monthly             | 1000m                    | 1                          | 4                                 | 52                                  |
| Commonwealth Heritage List                                                  | Australian Government Department<br>of the Agriculture, Water and the<br>Environment | 03/06/2022     | 13/04/2022       | Annually            | 1000m                    | 0                          | 0                                 | 0                                   |
| National Heritage List                                                      | Australian Government Department<br>of the Agriculture, Water and the<br>Environment | 03/06/2022     | 13/04/2022       | Annually            | 1000m                    | 0                          | 0                                 | 0                                   |
| State Heritage Register - Curtilages                                        | NSW Department of Planning,<br>Industry and Environment                              | 17/08/2022     | 11/02/2022       | Quarterly           | 1000m                    | 0                          | 0                                 | 1                                   |
| Environmental Planning Instrument<br>Local Heritage                         | NSW Department of Planning,<br>Industry and Environment                              | 02/09/2022     | 26/08/2022       | Monthly             | 1000m                    | 1                          | 4                                 | 77                                  |
| Bush Fire Prone Land                                                        | NSW Rural Fire Service                                                               | 05/09/2022     | 08/08/2022       | Weekly              | 1000m                    | 0                          | 0                                 | 3                                   |
| Vegetation of Southern Forests                                              | NSW Office of Environment & Heritage                                                 | 09/12/2014     | 10/10/2011       | Unknown             | 1000m                    | 0                          | 0                                 | 3                                   |
| Ramsar Wetlands of Australia                                                | Australian Government Department<br>of Agriculture, Water and the<br>Environment     | 28/03/2022     | 19/03/2020       | Annually            | 1000m                    | 0                          | 0                                 | 0                                   |
| Groundwater Dependent Ecosystems                                            | Bureau of Meteorology                                                                | 14/08/2017     | 15/05/2017       | Annually            | 1000m                    | 0                          | 0                                 | 2                                   |
| Inflow Dependent Ecosystems<br>Likelihood                                   | Bureau of Meteorology                                                                | 14/08/2017     | 15/05/2017       | Unknown             | 1000m                    | 0                          | 0                                 | 2                                   |
| NSW BioNet Species Sightings                                                | NSW Office of Environment & Heritage                                                 | 05/09/2022     | 05/09/2022       | Weekly              | 10000m                   | -                          | -                                 | -                                   |

## Site Diagram


Cooma Hospital, Bent Street, Cooma, NSW 2630





### **Contaminated Land**

#### Cooma Hospital, Bent Street, Cooma, NSW 2630



## **Contaminated Land**

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

| Map<br>Id | Site                                                | Address                                       | Suburb | Activity           | Management<br>Class                                         | Status              | Location<br>Confidence | Dist | Direction     |
|-----------|-----------------------------------------------------|-----------------------------------------------|--------|--------------------|-------------------------------------------------------------|---------------------|------------------------|------|---------------|
| 333       | Former Shell<br>Service<br>Station                  | 48-52 Sharp<br>Street                         | Cooma  | Service<br>Station | Contamination<br>formerly<br>regulated under<br>the CLM Act | Current<br>EPA List | Premise<br>Match       | 677m | North         |
| 5172      | Former Shell<br>Depot                               | 48-50<br>Bradley<br>Street                    | Cooma  | Other<br>Petroleum | Regulation<br>under CLM Act<br>not required                 | Current<br>EPA List | Premise<br>Match       | 703m | North<br>East |
| 332       | Caltex<br>Cooma<br>Service<br>Station               | 44 Sharp<br>Street, corner<br>Baron<br>STREET | Cooma  | Service<br>Station | Regulation<br>under CLM Act<br>not required                 | Current<br>EPA List | Premise<br>Match       | 743m | North         |
| 331       | Former<br>Caltex<br>Cooma Depot                     | 2 Short<br>Street                             | Cooma  | Service<br>Station | Regulation<br>under CLM Act<br>not required                 | Current<br>EPA List | Premise<br>Match       | 767m | North<br>East |
| 335       | Woolworths<br>Caltex<br>Cooma<br>Service<br>Station | Bombala<br>Street Cnr<br>Massie Street        | Cooma  | Service<br>Station | Regulation<br>under CLM Act<br>not required                 | Current<br>EPA List | Premise<br>Match       | 809m | North<br>West |
| 334       | Former Mobil<br>Cooma Depot                         | 2<br>Commissione<br>r Street                  | Cooma  | Other<br>Petroleum | Regulation<br>under CLM Act<br>not required                 | Current<br>EPA List | Premise<br>Match       | 869m | North         |

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

| EPA site management class                                                     | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contamination being managed<br>via the planning process (EP&A<br>Act)         | The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment. |
| Contamination currently<br>regulated under CLM Act                            | The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.                                                                                                                                     |
| Contamination currently<br>regulated under POEO Act                           | The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.                                                                                                                                                    |
| Contamination formerly regulated under the CLM Act                            | The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.                                                                                                                                                                                                                                                                                           |
| Contamination formerly regulated under the POEO Act                           | The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).                                                                                                                                                                                                                                                                                                |
| Contamination was addressed<br>via the planning process (EP&A<br>Act)         | The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).                                                                                                                                                                                                                                     |
| Ongoing maintenance required<br>to manage residual<br>contamination (CLM Act) | The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.                                                                                                                                                                                                                                   |

| EPA site management class                 | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regulation being finalised                | The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.                                                                                                                                                                                                                                                 |
| Regulation under the CLM Act not required | The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.                                                                                                                                                                                                                                                                                                                              |
| Under assessment                          | The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order. |

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

## **Contaminated Land**

Cooma Hospital, Bent Street, Cooma, NSW 2630

### **Contaminated Land: Records of Notice**

Record of Notices within the dataset buffer:

| Map Id | Name                            | Address            | Suburb | Notices  | Area<br>No | Location<br>Confidence | Distance | Direction |
|--------|---------------------------------|--------------------|--------|----------|------------|------------------------|----------|-----------|
| 87     | Former Shell<br>Service Station | 48-52 Sharp Street | Cooma  | 4 former | 3110       | Premise<br>Match       | 677m     | North     |

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

#### **Former Gasworks**

#### Former Gasworks within the dataset buffer:

| Map<br>Id | Location             | Council | Further Info | Location<br>Confidence | Distance | Direction |
|-----------|----------------------|---------|--------------|------------------------|----------|-----------|
| N/A       | No records in buffer |         |              |                        |          |           |

Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$  State of New South Wales through the Environment Protection Authority

### Waste Management & Liquid Fuel Facilities

Cooma Hospital, Bent Street, Cooma, NSW 2630





## Waste Management & Liquid Fuel Facilities

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

| Site<br>Id | Owner                   | Name | Address | Suburb | Class | Landfill | Reprocess | Transfer | Comments | Loc<br>Conf | Dist | Direction |
|------------|-------------------------|------|---------|--------|-------|----------|-----------|----------|----------|-------------|------|-----------|
| N/A        | No records<br>in buffer |      |         |        |       |          |           |          |          |             |      |           |

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **National Liquid Fuel Facilities**

National Liquid Fuel Facilties within the dataset buffer:

| Map<br>Id | Owner               | Name                       | Address               | Suburb | Class          | Operational<br>Status | Operator | Revision<br>Date | Loc<br>Conf      | Dist | Direction     |
|-----------|---------------------|----------------------------|-----------------------|--------|----------------|-----------------------|----------|------------------|------------------|------|---------------|
| 4829      | Caltex              | Caltex Cooma               | 44 Sharp Street       | Cooma  | Petrol Station | Operational           |          | 25/07/2011       | Premise<br>Match | 743m | North         |
| 3711      | 7-Eleven<br>Pty Ltd | Mobil Cooma                | 40-42 Sharp<br>Street | Cooma  | Petrol Station | Operational           |          | 13/07/2012       | Premise<br>Match | 794m | North         |
| 3972      | Shell               | Region                     | 47-51 Sharp<br>Street | Cooma  | Petrol Station | Operational           |          | 25/07/2011       | Premise<br>Match | 799m | North         |
| 4828      | Caltex              | Woolworths<br>Caltex Cooma | 8 Bombala<br>Street   | Cooma  | Petrol Station | Operational           |          | 25/07/2011       | Premise<br>Match | 809m | North<br>West |
| 4830      | Caltex              | Cooma                      | 41 Sharp Street       | Cooma  | Petrol Station | Operational           |          | 25/07/2011       | Premise<br>Match | 852m | North         |

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

## **PFAS Investigation & Management Programs**

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **EPA PFAS Investigation Program**

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

| Map ID | Site                 | Address | Loc<br>Conf | Dist | Dir |
|--------|----------------------|---------|-------------|------|-----|
| N/A    | No records in buffer |         |             |      |     |

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

### **Defence PFAS Investigation Program**

#### Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

| Map ID | Base Name            | Address | Loc<br>Conf | Dist | Dir |
|--------|----------------------|---------|-------------|------|-----|
| N/A    | No records in buffer |         |             |      |     |

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

### Defence PFAS Management Program

#### Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

| Map ID | Base Name            | Address | Loc<br>Conf | Dist | Dir |
|--------|----------------------|---------|-------------|------|-----|
| N/A    | No records in buffer |         |             |      |     |

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

#### **Airservices Australia National PFAS Management Program**

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

| Map ID | Site Name            | Impacts | Loc<br>Conf | Dist | Dir |
|--------|----------------------|---------|-------------|------|-----|
| N/A    | No records in buffer |         |             |      |     |

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

## **Defence Sites**

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Defence 3 Year Regional Contamination Investigation Program**

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

| Property ID | Base Name            | Address | Known<br>Contamination | Loc<br>Conf | Dist | Dir |
|-------------|----------------------|---------|------------------------|-------------|------|-----|
| N/A         | No records in buffer |         |                        |             |      |     |

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

## **EPA Other Sites with Contamination Issues**

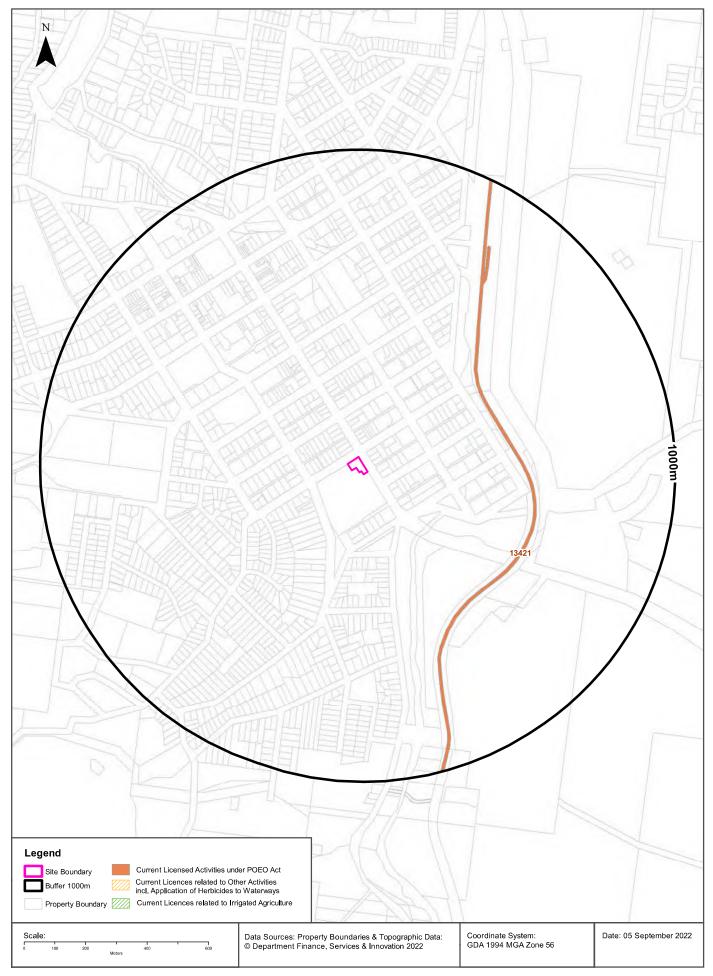
Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **EPA Other Sites with Contamination Issues**

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:


| Site Id | Site Name            | Site Address | Dataset | Comments | Location<br>Confidence | Distance | Direction |
|---------|----------------------|--------------|---------|----------|------------------------|----------|-----------|
| N/A     | No records in buffer |              |         |          |                        |          |           |

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

#### **Current EPA Licensed Activities**

Cooma Hospital, Bent Street, Cooma, NSW 2630





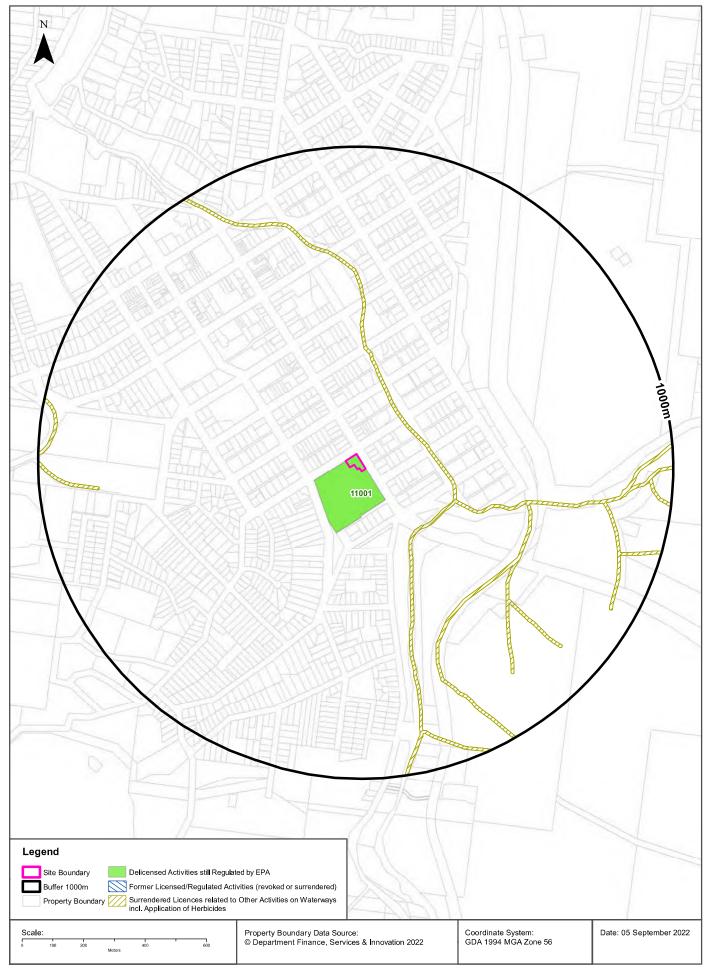
## **EPA Activities**

Cooma Hospital, Bent Street, Cooma, NSW 2630

### Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

| EPL   | Organisation                 | Name | Address                                                | Suburb | Activity                      | Loc Conf               | Distance | Direction |
|-------|------------------------------|------|--------------------------------------------------------|--------|-------------------------------|------------------------|----------|-----------|
| 13421 | UGL REGIONAL<br>LINX PTY LTD |      | COUNTRY<br>REGIONAL<br>NETWORK,<br>ORANGE, NSW<br>2800 |        | Railway systems<br>activities | Network of<br>Features | 439m     | East      |


POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

#### **Delicensed & Former Licensed EPA Activities**

Cooma Hospital, Bent Street, Cooma, NSW 2630





## **EPA Activities**

Cooma Hospital, Bent Street, Cooma, NSW 2630

### **Delicensed Activities still regulated by the EPA**

Delicensed activities still regulated by the EPA, within the dataset buffer:

| Licence<br>No | Organisation                                  | Name                       | Address     | Suburb | Activity                                                           | Loc<br>Conf      | Distance | Direction |
|---------------|-----------------------------------------------|----------------------------|-------------|--------|--------------------------------------------------------------------|------------------|----------|-----------|
| 11001         | GREATER<br>SOUTHERN<br>AREA HEALTH<br>SERVICE | COOMA<br>HEALTH<br>SERVICE | Bent Street | COOMA  | Hazardous, Industrial<br>or Group A Waste<br>Generation or Storage | Premise<br>Match | 0m       | On-site   |

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

# Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

| Licence<br>No | Organisation                                     | Location                                                                | Status      | lssued<br>Date | Activity                                                                 | Loc Conf                  | Distance | Direction     |
|---------------|--------------------------------------------------|-------------------------------------------------------------------------|-------------|----------------|--------------------------------------------------------------------------|---------------------------|----------|---------------|
| 4653          | LUHRMANN<br>ENVIRONMENT<br>MANAGEMENT<br>PTY LTD | WATERWAYS<br>THROUGHOUT<br>NSW                                          | Surrendered | 06/09/2000     | Other Activities / Non Scheduled<br>Activity - Application of Herbicides | Network<br>of<br>Features | 183m     | South<br>East |
| 4838          | Robert Orchard                                   | Various Waterways<br>throughout New<br>South Wales -<br>SYDNEY NSW 2000 | Surrendered | 07/09/2000     | Other Activities / Non Scheduled<br>Activity - Application of Herbicides | Network<br>of<br>Features | 183m     | South<br>East |
| 6630          | SYDNEY WEED<br>& PEST<br>MANAGEMENT<br>PTY LTD   | WATERWAYS<br>THROUGHOUT<br>NSW - PROSPECT,<br>NSW, 2148                 | Surrendered | 09/11/2000     | Other Activities / Non Scheduled<br>Activity - Application of Herbicides | Network<br>of<br>Features | 183m     | South<br>East |

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

## **Historical Business Directories**

Cooma Hospital, Bent Street, Cooma, NSW 2630





## **Historical Business Directories**

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Business Directory Records 1950-1991 Premise or Road Intersection Matches**

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

| Map Id | Business Activity                           | Premise                                                       | Ref No. | Year | Location<br>Confidence | Distance to<br>Property<br>Boundary or<br>Road<br>Intersection | Direction  |
|--------|---------------------------------------------|---------------------------------------------------------------|---------|------|------------------------|----------------------------------------------------------------|------------|
| 1      | BUILDERS &/OR<br>CONTRACTORS                | Architon Construction Co. Pty. Ltd., 2<br>Bent St. Cooma 2630 | 585079  | 1970 | Premise Match          | 0m                                                             | On-site    |
|        | BUILDERS & CONTRACTORS                      | Architon Construction Co. Pty. Ltd., 2<br>Bent St., Cooma     | 195404  | 1961 | Premise Match          | 0m                                                             | On-site    |
| 2      | CARRIERS & CARTAGE<br>CONTRACTORS           | Anderson's Transport, 96 Bombala St.<br>Cooma 2630            | 585129  | 1970 | Premise Match          | 30m                                                            | East       |
| 3      | BUILDERS & CONTRACTORS                      | Owers, F. E., 35 Victoria St., Cooma                          | 195417  | 1961 | Premise Match          | 35m                                                            | North West |
| 4      | PAINTERS, PAPERHANGERS<br>& DECORATORS      | Tomkins, W. S., 88 Bombala St.,<br>Cooma                      | 195983  | 1961 | Premise Match          | 56m                                                            | North      |
| 5      | CARRIERS & CARTAGE<br>CONTRACTORS           | Woodhouse, C. W., 27 Albert St.<br>Cooma                      | 166128  | 1950 | Premise Match          | 87m                                                            | East       |
| 6      | PAINTERS, PAPERHANGERS<br>& DECORATORS      | Fachin, Elido, 28 Albert St. Cooma<br>2630                    | 585528  | 1970 | Premise Match          | 117m                                                           | East       |
|        | PAINTERS, PAPERHANGERS<br>& DECORATORS      | Fachin, Elido, 28 Albert St., Cooma                           | 195978  | 1961 | Premise Match          | 117m                                                           | East       |
| 7      | DRY CLEANERS & PRESSERS.                    | Snowy Laundry., 23 Albert St., Cooma 2630                     | 145874  | 1991 | Premise Match          | 127m                                                           | East       |
|        | LAUNDRIES SELF SERVICE<br>&/OR LAUNDRETTES. | Snowy Laundry., 23 Albert St., Cooma 2630                     | 146043  | 1991 | Premise Match          | 127m                                                           | East       |
|        | LAUNDRIES &/OR<br>LAUNDRETTES               | Snowy Laundry, 23 Albert St., Cooma 2630                      | 154741  | 1982 | Premise Match          | 127m                                                           | East       |
|        | LAUNDRIES &/OR<br>LAUNDROMATS               | Snowy Laundry, 23 Albert St. Cooma 2630                       | 585370  | 1970 | Premise Match          | 127m                                                           | East       |
| 8      | DRY CLEANERS, PRESSERS<br>& DYERS           | Cooma Steam Laundry, 155 Vale St.,<br>Cooma                   | 366701  | 1961 | Road<br>Intersection   | 135m                                                           | West       |
|        | INSURANCE AGENTS                            | Cooma Steam Laundry, 155 Vale St.,<br>Cooma                   | 366705  | 1961 | Road<br>Intersection   | 135m                                                           | West       |
|        | LAUNDRIES                                   | Cooma Steam Laundry, 155 Vale St.,<br>Cooma                   | 366895  | 1961 | Road<br>Intersection   | 135m                                                           | West       |
|        | INSURANCE AGENTS                            | Doyle, P. G., 155 Vale St., Cooma                             | 195760  | 1961 | Road<br>Intersection   | 135m                                                           | West       |

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

#### Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

| Map Id | Business Activity                                | Premise                                                                             | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|--------------------------------------------------|-------------------------------------------------------------------------------------|---------|------|------------------------|--------------------------------------------|
| 9      | AMBULANCES.                                      | Cooma District Ambulance., Bombala St., Cooma 2630                                  | 145721  | 1991 | Road Match             | 0m                                         |
|        | LIQUOR STORES RETAIL.                            | Payless Liquor Drive In., Bombala St., Cooma 2630                                   | 146051  | 1991 | Road Match             | 0m                                         |
|        | AMBULANCES                                       | Cooma District Ambulance, Bombala St., Cooma 2630                                   | 154461  | 1982 | Road Match             | 0m                                         |
|        | AGRICULTURAL MACHINERY<br>HIRERS &/OR DEALERS    | Baker-Ford Motors Pty. Ltd., Bombala St. Cooma 2630                                 | 584991  | 1970 | Road Match             | 0m                                         |
|        | MOTOR CAR & TRUCK<br>DEALERS-NEW & USED          | Baker-Ford Motors Pty. Ltd., Bombala St. Cooma 2630                                 | 585448  | 1970 | Road Match             | 0m                                         |
|        | MOTOR GARAGES & ENGINEERS                        | Baker-Ford Motors Pty. Ltd., Bombala St. Cooma 2630                                 | 585464  | 1970 | Road Match             | 0m                                         |
|        | MOTOR PAINTERS & PANEL<br>BEATERS                | Baker-Ford Motors Pty. Ltd., Bombala St. Cooma 2630                                 | 585487  | 1970 | Road Match             | 0m                                         |
|        | MOTOR TOWING SERVICES                            | Baker-Ford Motors Pty. Ltd., Bombala St. Cooma 2630                                 | 585498  | 1970 | Road Match             | 0m                                         |
|        | LOCAL BODIES                                     | Cooma District Ambulance, Bombala St. Cooma 2630                                    | 585385  | 1970 | Road Match             | 0m                                         |
|        | HOSPITALS & HEALTH<br>CENTRES                    | Cooma District Hospital, Bombala St. Cooma 2630                                     | 585325  | 1970 | Road Match             | 0m                                         |
|        | LOCAL BODIES                                     | Cooma Municipal Council, Bombala St. Cooma 2630                                     | 585387  | 1970 | Road Match             | 0m                                         |
|        | GOVERNMENT<br>DEPARTMENTS                        | Monaro County Council, Bombala St. Cooma 2630                                       | 585263  | 1970 | Road Match             | 0m                                         |
|        | GOVERNMENT<br>DEPARTMENTS                        | Moriaro Shire Council Bombala St. Cooma 2630                                        | 585264  | 1970 | Road Match             | 0m                                         |
|        | RESTAURANT                                       | Savoy Restaurant, Bombala St. Cooma 2630                                            | 585571  | 1970 | Road Match             | 0m                                         |
|        | FURNITURE & FURNISHINGS                          | Watson, Robert (Cooma) Pty. Ltd., Bombala St.<br>Cooma 2630                         | 585240  | 1970 | Road Match             | 0m                                         |
|        | LOCAL BODIES                                     | Cooma District Ambulance, Bombala St., Cooma                                        | 195795  | 1961 | Road Match             | 0m                                         |
|        | HOSPITALS & HEALTH<br>CENTRES                    | Cooma District Hospital, Bombala St., Cooma                                         | 195736  | 1961 | Road Match             | 0m                                         |
|        | CABARETS, DANCES,<br>RESTAURANTS, ROAD<br>HOUSES | Cortina Restaurant, Bombala St., Cooma                                              | 195439  | 1961 | Road Match             | 0m                                         |
|        | CAFES, TEA ROOMS & COFFEE LOUNGES, ETC.          | Cortina Restaurant, Bombala St., Cooma                                              | 195452  | 1961 | Road Match             | 0m                                         |
|        | GOVERNMENT<br>DEPARTMENTS                        | Monaro County Council, Bombala St,. Cooma                                           | 195674  | 1961 | Road Match             | 0m                                         |
|        | GOVERNMENT<br>DEPARTMENTS                        | Monaro Shire Council, Bombala St., Cooma                                            | 195675  | 1961 | Road Match             | 0m                                         |
|        | BATTERY DISTRIBUTORS                             | National Tyre Service, Bombala St., Cooma                                           | 195386  | 1961 | Road Match             | 0m                                         |
|        | AMBULANCES                                       | Ambulance, Bombala St. Cooma                                                        | 166060  | 1950 | Road Match             | 0m                                         |
|        | LOCAL BODIES                                     | Cooma District Ambulance, Bombala St. Cooma                                         | 166277  | 1950 | Road Match             | 0m                                         |
|        | HOSPITALS                                        | Cooma District Hospital, Bombala St. Cooma                                          | 166252  | 1950 | Road Match             | 0m                                         |
|        | TRACTOR DEALERS,<br>REPAIRERS & SERVICEMEN       | Cooma Investments Pty. Ltd. (Agents Allis-<br>Chalmers Tractors), Bombala St. Cooma | 166464  | 1950 | Road Match             | 0m                                         |
|        | MOTOR CAR & TRUCK<br>DEALERS                     | Cooma Investments Pty. Ltd. (Agents, G.M.H.),<br>Bombala St. Cooma                  | 166332  | 1950 | Road Match             | 0m                                         |

| Map Id | Business Activity                              | Premise                                                                                                                                                                  | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------------------|--------------------------------------------|
| 9      | INSURANCE AGENTS                               | Cooma Investments Pty. Ltd. (Agents, Security and<br>General Insrnce., Transport and General Insrnce.,<br>Govt. Insrnce., Royal Exchange Insrnce.),<br>Bombala St. Cooma | 166264  | 1950 | Road Match             | 0m                                         |
|        | AGRICULTURAL MACHINERY<br>DEALERS              | Cooma Investments Pty. Ltd., Bombala St. Cooma                                                                                                                           | 166056  | 1950 | Road Match             | 0m                                         |
|        | MOTOR ACCESSORIES<br>DEALERS                   | Cooma Investments Pty. Ltd., Bombala St. Cooma                                                                                                                           | 166323  | 1950 | Road Match             | 0m                                         |
|        | MOTOR BODY BUILDERS                            | Cooma Investments Pty. Ltd., Bombala St. Cooma                                                                                                                           | 166326  | 1950 | Road Match             | 0m                                         |
|        | MOTOR ELECTRICIANS                             | Cooma Investments Pty. Ltd., Bombala St. Cooma                                                                                                                           | 166338  | 1950 | Road Match             | 0m                                         |
|        | MOTOR GARAGES &<br>ENGINEERS                   | Cooma Investments Pty. Ltd., Bombala St. Cooma                                                                                                                           | 166341  | 1950 | Road Match             | 0m                                         |
|        | MOTOR TOWING SERVICES                          | Cooma Investments Pty. Ltd., Bombala St. Cooma                                                                                                                           | 166360  | 1950 | Road Match             | 0m                                         |
|        | MOTOR TRIMMERS                                 | Cooma Investments Pty. Ltd., Bombala St. Cooma                                                                                                                           | 166362  | 1950 | Road Match             | 0m                                         |
|        | MOTOR PAINTERS & PANEL<br>BEATERS              | Cooma Investments Pty., Ltd., Bombala St. Cooma                                                                                                                          | 166356  | 1950 | Road Match             | 0m                                         |
|        | SHEARING MACHINERY<br>DEALERS                  | Coona Investments Pty. Ltd. (Agents, Dangar, Gedye and Malloch Ltd.), Bombala St. Cooma                                                                                  | 166428  | 1950 | Road Match             | 0m                                         |
|        | MOTOR GARAGES &<br>ENGINEERS                   | Hibbard, C. B. L., Bombala St. Cooma                                                                                                                                     | 166342  | 1950 | Road Match             | 0m                                         |
|        | BAKERS-BREAD                                   | Monaro Bakery, Bombala St. Cooma                                                                                                                                         | 166068  | 1950 | Road Match             | 0m                                         |
|        | GOVERNMENT<br>DEPARTMENTS                      | Monaro Shire Council, Bombala                                                                                                                                            | 166228  | 1950 | Road Match             | 0m                                         |
|        | CAKE SHOPS &<br>PASTRYCOOKS                    | Peter Pan Cake Shop, Bombala St. Cooma                                                                                                                                   | 166119  | 1950 | Road Match             | 0m                                         |
| 10     | HOSPITALS &/OR NURSING<br>HOMES.               | Cooma District Hospital., Victoria St., Cooma 2630                                                                                                                       | 146015  | 1991 | Road Match             | 0m                                         |
|        | HOSPITALS &/OR HEALTH<br>CENTRES               | Cooma District Hospital, Victoria St., Cooma 2630                                                                                                                        | 154710  | 1982 | Road Match             | 0m                                         |
|        | CARRIERS & CARTAGE<br>CONTRACTORS              | Anderson, J. W., Victoria St., Cooma                                                                                                                                     | 195479  | 1961 | Road Match             | 0m                                         |
|        | CARRIERS & CARTAGE<br>CONTRACTORS              | Anderson and Rees, Victoria St. Cooma                                                                                                                                    | 166120  | 1950 | Road Match             | 0m                                         |
| 11     | INSURANCE AGENTS                               | Johnson, A, H., Bent St. Cooma 2630                                                                                                                                      | 585346  | 1970 | Road Match             | 120m                                       |
|        | BUTCHERS-RETAIL                                | Grigor, D., Bent St., Cooma                                                                                                                                              | 195432  | 1961 | Road Match             | 120m                                       |
|        | CARRIERS & CARTAGE<br>CONTRACTORS              | Jones, H., Bent St., Cooma                                                                                                                                               | 195485  | 1961 | Road Match             | 120m                                       |
|        | DRESSMAKERS &<br>COSTUMIERS                    | Mann, Madam, Bent St., Cooma                                                                                                                                             | 195540  | 1961 | Road Match             | 120m                                       |
|        | CARPENTERS                                     | Meltzer, W., Bent St., Cooma                                                                                                                                             | 195476  | 1961 | Road Match             | 120m                                       |
|        | GROCERS & GENERAL<br>STOREKEEPERS              | Perry's, Bent St., ., Cooma                                                                                                                                              | 195697  | 1961 | Road Match             | 120m                                       |
| 12     | SCHOOLS &/OR COLLEGES -<br>PRIVATE &/OR PUBLIC | Brigidine Convent., Vale St., Cooma 2630                                                                                                                                 | 146243  | 1991 | Road Match             | 123m                                       |
|        | LIQUOR STORES RETAIL.                          | Cooma Cellars., Vale St., Cooma 2630                                                                                                                                     | 146047  | 1991 | Road Match             | 123m                                       |
|        | SCHOOLS &/OR COLLEGES -<br>PRIVATE &/OR PUBLIC | Cooma Public School., Vale St., Cooma 2630                                                                                                                               | 146245  | 1991 | Road Match             | 123m                                       |
|        | GOVERNMENT<br>DEPARTMENTS.                     | Court House., Vale St., Cooma 2630                                                                                                                                       | 145959  | 1991 | Road Match             | 123m                                       |
|        | REAL ESTATE AGENTS.                            | Dalgety Winchcombe F.G.C., 81 Vala St., Cooma 2630                                                                                                                       | 146209  | 1991 | Road Match             | 123m                                       |
|        | GROCERS &/OR GENERAL<br>STOREKEEPERS.          | Woolworths Food Fair., Vale St., Cooma 2630                                                                                                                              | 145975  | 1991 | Road Match             | 123m                                       |
|        | SCHOOLS &/OR COLLEGES<br>PRIVATE & /OR PUBLIC  | Brigidine Convent. Vale St., Cooma 2630                                                                                                                                  | 154913  | 1982 | Road Match             | 123m                                       |
|        | GOVERNMENT<br>DEPARTMENTS                      | Commonwealth Employment Agency. Court<br>House. Vale St., Cooma 2630                                                                                                     | 154666  | 1982 | Road Match             | 123m                                       |
|        | SCHOOLS &/OR COLLEGES<br>PRIVATE & /OR PUBLIC  | Cooma Public School. Vale St., Cooma 2630                                                                                                                                | 154915  | 1982 | Road Match             | 123m                                       |

| Map Id | Business Activity                                   | Premise                                                       | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|-----------------------------------------------------|---------------------------------------------------------------|---------|------|------------------------|--------------------------------------------|
| 12     | GOVERNMENT<br>DEPARTMENTS                           | Court House, Vale St., Cooma 2630                             | 154669  | 1982 | Road Match             | 123m                                       |
|        | AUCTIONEERS, STOCK &<br>STATION AGENTS              | A.M.L. & F. Co. Ltd., Vale St. Cooma 2630                     | 585027  | 1970 | Road Match             | 123m                                       |
|        | STATION & FARM SUPPLIES                             | A.M.L. & F. Co. Ltd., Vale St. Cooma 2630                     | 585621  | 1970 | Road Match             | 123m                                       |
|        | SCHOOLS & COLLEGES-<br>PRIVATE & PUBLIC             | Brigidine Convent, Vale St. Cooma 2630                        | 585584  | 1970 | Road Match             | 123m                                       |
|        | ASSOCIATIONS, SOCIETIES,<br>CLUBS & SPORTING BODIES | Cooma Citizens' Club, Vale St. Cooma 2630                     | 585009  | 1970 | Road Match             | 123m                                       |
|        | ASSOCIATIONS, SOCIETIES,<br>CLUBS & SPORTING BODIES | Cooma Ex-Servicemen's Club, Vale St. Cooma 2630               | 585010  | 1970 | Road Match             | 123m                                       |
|        | ASSOCIATIONS, SOCIETIES,<br>CLUBS & SPORTING BODIES | Cooma Pastoral and Agricultural Ass'n, Vale St.<br>Cooma 2630 | 585013  | 1970 | Road Match             | 123m                                       |
|        | SCHOOLS & COLLEGES-<br>PRIVATE & PUBLIC             | Cooma Public School, Vale St. Cooma 2630                      | 585587  | 1970 | Road Match             | 123m                                       |
|        | GOVERNMENT<br>DEPARTMENTS                           | Court House, Vale St. Cooma 2630                              | 585256  | 1970 | Road Match             | 123m                                       |
|        | DRESS SHOPS &<br>ACCESSORIES                        | Murphy, P. D. Pty. Ld., Vale St. Cooma 2630                   | 585167  | 1970 | Road Match             | 123m                                       |
|        | BABY & CHILDREN'S WEAR-<br>RETAIL                   | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585036  | 1970 | Road Match             | 123m                                       |
|        | DRAPERS & HABERDASHERS                              | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585160  | 1970 | Road Match             | 123m                                       |
|        | GROCERS & SELF SERVICE<br>STORES                    | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585288  | 1970 | Road Match             | 123m                                       |
|        | HARDWARE & BUILDERS'<br>SUPPLIES                    | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585310  | 1970 | Road Match             | 123m                                       |
|        | MERCERS & MEN'S & BOYS'<br>OUTFITTERS               | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585404  | 1970 | Road Match             | 123m                                       |
|        | OUTFITTERS- LADIES' &<br>CHILDREN'S                 | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585522  | 1970 | Road Match             | 123m                                       |
|        | PRODUCE MERCHANTS-<br>GRAIN & SEED-RETAIL           | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585547  | 1970 | Road Match             | 123m                                       |
|        | STATION & FARM SUPPLIES                             | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585627  | 1970 | Road Match             | 123m                                       |
|        | WINE & SPIRIT MERCHANTS-<br>RETAIL                  | Murphy, P. D. Pty. Ltd., Vale St. Cooma 2630                  | 585710  | 1970 | Road Match             | 123m                                       |
|        | CHAIN STORES                                        | Woolworths Food Fair, Vale St. Cooma 2630                     | 585138  | 1970 | Road Match             | 123m                                       |
|        | FRUITERERS &<br>GREENGROCERS                        | Woolworths Food Fair, Vale St. Cooma 2630                     | 585229  | 1970 | Road Match             | 123m                                       |
|        | GROCERS & SELF SERVICE<br>STORES                    | Woolworths Food Fair, Vale St. Cooma 2630                     | 585293  | 1970 | Road Match             | 123m                                       |
|        | AUCTIONEERS, STOCK &<br>STATION AGENTS              | A.M.L. & F. Co. Ltd., Vale St., Cooma                         | 195368  | 1961 | Road Match             | 123m                                       |
|        | INSURANCE AGENTS                                    | A.M.L. & F. Co. Ltd., Vale St., Cooma                         | 195756  | 1961 | Road Match             | 123m                                       |
|        | STATION & FARM SUPPLIES                             | A.M.L. & F. Co. Ltd., Vale St., Cooma                         | 196090  | 1961 | Road Match             | 123m                                       |
|        | TAXIS & HIRE CARS                                   | Bolton, R. L., Vale St., Cooma                                | 196118  | 1961 | Road Match             | 123m                                       |
|        | SCHOOLS & COLLEGES-<br>PRIVATE & PUBLIC             | Brigidine Convent, Vale St., Cooma                            | 196043  | 1961 | Road Match             | 123m                                       |
|        | TAXIS & HIRE CARS                                   | Bryant, C. I., Vale St., Cooma                                | 196119  | 1961 | Road Match             | 123m                                       |
|        | CLUBS & SPORTS BODIES                               | Cooma Pastoral and Agricultural Ass'n, Vale St.,<br>Cooma     | 195502  | 1961 | Road Match             | 123m                                       |
|        | CLUBS & SPORTS BODIES                               | Cooma Race Club, Regstd. Office, Vale St.,<br>Cooma           | 195503  | 1961 | Road Match             | 123m                                       |
|        | FLORISTS-RETAIL                                     | Florist Shoppe, Vale St., Cooma                               | 195605  | 1961 | Road Match             | 123m                                       |
|        | PHOTOGRAPHIC SUPPLIES                               | Hoolm, S. Pharmacy, Vale St., Cooma                           | 195990  |      | Road Match             | 123m                                       |
|        | CABINETMAKERS & FRENCH<br>POLISHERS                 | McArthur, N., Vale St., Cooma                                 | 195444  | 1961 | Road Match             | 123m                                       |
|        | FURNITURE-OFFICE-RETAIL                             | McArthur, N., Vale St., Cooma                                 | 195661  | 1961 | Road Match             | 123m                                       |

| Map Id | Business Activity                         | Premise                                                                    | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|-------------------------------------------|----------------------------------------------------------------------------|---------|------|------------------------|--------------------------------------------|
| 12     | SHOP & OFFICE FITTERS                     | McArthur, N., Vale St., Cooma                                              | 196060  | 1961 | Road Match             | 123m                                       |
|        | REAL ESTATE AGENTS-<br>VALUERS            | Montague, Jas. H., Vale St., Cooma                                         | 196024  | 1961 | Road Match             | 123m                                       |
|        | GENERAL MERCHANTS                         | Murphy P. D. Pty. Ltd., Vale St., Cooma                                    | 195663  | 1961 | Road Match             | 123m                                       |
|        | GROCERS & GENERAL<br>STOREKEEPERS         | Murphy, P. D, Pty. Ltd., Vale St., Cooma                                   | 195696  | 1961 | Road Match             | 123m                                       |
|        | BUILDERS' SUPPLIERS                       | Murphy, P. D. Pty. Ltd,. Vale St., Cooma                                   | 195425  | 1961 | Road Match             | 123m                                       |
|        | WINE & SPIRIT MERCHANTS-<br>RETAIL        | Murphy, P. D. Pty. Ltd,. Vale St., Cooma                                   | 196182  | 1961 | Road Match             | 123m                                       |
|        | BABY & CHILDREN'S WEAR-<br>RETAIL         | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 195375  | 1961 | Road Match             | 123m                                       |
|        | DELICATESSENS                             | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 195525  | 1961 | Road Match             | 123m                                       |
|        | DRAPERS-RETAIL                            | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 195536  | 1961 | Road Match             | 123m                                       |
|        | FOOTWEAR RETAILERS                        | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 195617  | 1961 | Road Match             | 123m                                       |
|        | HARDWARE DEALERS &<br>IRONMONGERS         | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 195716  | 1961 | Road Match             | 123m                                       |
|        | MERCERS & MEN'S & BOYS'<br>OUTFITTERS     | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 195819  | 1961 | Road Match             | 123m                                       |
|        | OUTFITTERS- LADIES' &<br>CHILDREN'S       | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 195969  | 1961 | Road Match             | 123m                                       |
|        | PRODUCE MERCHANTS-<br>GRAIN & SEED-RETAIL | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 196008  | 1961 | Road Match             | 123m                                       |
|        | STATION & FARM SUPPLIES                   | Murphy, P. D. Pty. Ltd., Vale St., Cooma                                   | 196095  | 1961 | Road Match             | 123m                                       |
|        | FRUITERERS &<br>GREENGROCERS              | Murphy, P. O. Pty. Ltd., Vale St., Cooma                                   | 195647  | 1961 | Road Match             | 123m                                       |
|        | GROCERS & GENERAL<br>STOREKEEPERS         | Solomens Store, Vale St., Cooma                                            | 195699  | 1961 | Road Match             | 123m                                       |
|        | FURNITURE & FURNISHINGS-<br>RETAIL        | Williams, B. J. and Son, Vale St., Cooma                                   | 195660  | 1961 | Road Match             | 123m                                       |
|        | COMPANY OFFICES                           | Adaminaby Rural Co-op. Society Ltd., Regstd.<br>Office, Vale St. Cooma     | 166137  | 1950 | Road Match             | 123m                                       |
|        | BABY HEALTH CENTRES                       | Baby Health Centre, Vale St. Cooma                                         | 166067  | 1950 | Road Match             | 123m                                       |
|        | LIBRARIES-LENDING                         | Book Club Library, Vale St. Cooma                                          | 166274  | 1950 | Road Match             | 123m                                       |
|        | LIBRARIES-LENDING                         | Cooma Municipal Library, Vale St. Cooma                                    | 166276  | 1950 | Road Match             | 123m                                       |
|        | CLUBS & SPORTS BODIES                     | Cooma Pastoral and Agricultural Ass'n, Vale St.<br>Cooma                   | 166136  | 1950 | Road Match             | 123m                                       |
|        | CLUBS & SPORTS BODIES                     | Cooma Race Club, Regstd. Office, Vale St. Cooma                            | 166135  | 1950 | Road Match             | 123m                                       |
|        | COMPANY OFFICES                           | Cooma Rural Co-op. Society Ltd., Regstd. Office,<br>Vale St. Cooma         | 166138  | 1950 | Road Match             | 123m                                       |
|        | BUTCHERS-RETAIL                           | Cooma-Monaro Meat Works, Vale St. Cooma                                    | 166109  | 1950 | Road Match             | 123m                                       |
|        | WOOL BROKERS                              | Goodwin, R. (Agent, Country Producers Selling<br>Co. Ltd.), Vale St. Cooma | 166493  | 1950 | Road Match             | 123m                                       |
|        | INSURANCE AGENTS                          | Goodwin, R. (Agent, Queensland Insrnce. Co.<br>Ltd.), Vale St. Cooma       | 166265  | 1950 | Road Match             | 123m                                       |
|        | AUCTIONEERS                               | Goodwin, R., Vale St. Cooma                                                | 166063  | 1950 | Road Match             | 123m                                       |
|        | STOCK & STATION AGENTS                    | Goodwin, R., Vale St. Cooma                                                | 166406  | 1950 | Road Match             | 123m                                       |
|        | RADIO DEALERS &<br>SERVICEMEN             | Klein Radio Service (Agents, Philips, Ferris), Vale<br>St Cooma            | 166397  | 1950 | Road Match             | 123m                                       |
|        | ELECTRICAL SUPPLIES & APPLIANCES-RETAIL   | Klein Radio Service, Vale St. Cooma                                        | 166177  | 1950 | Road Match             | 123m                                       |
|        | INSURANCE AGENTS                          | Montague, J. H. (Agent, Phoenix Insrnce. Co.),<br>Vale St. Cooma           | 166271  | 1950 | Road Match             | 123m                                       |
|        | AUCTIONEERS                               | Montague, J. H. Vale St. Cooma                                             | 166066  | 1950 | Road Match             | 123m                                       |
|        | STOCK & STATION AGENTS                    | Montague, J. H., Vale St. Cooma                                            | 166409  | 1950 | Road Match             | 123m                                       |

| Map Id | Business Activity                               | Premise                                                                                                         | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|------|------------------------|--------------------------------------------|
| 12     | AGRICULTURAL MACHINERY<br>DEALERS               | Murphy P. D. Pty. Ltd. (Agents, International<br>Harvester Co.), Vale St. Cooma                                 | 166058  | 1950 | Road Match             | 123m                                       |
|        | TRACTOR DEALERS,<br>REPAIRERS & SERVICEMEN      | Murphy, J. (Agent, international Harvester Co.),<br>Vale St. Cooma                                              | 166466  | 1950 | Road Match             | 123m                                       |
|        | MOTOR OIL & SPIRIT<br>MERCHANTS                 | Murphy, P. D. Pty. Ltd. (Agents, Atlantic Union Oil<br>Co.), Vale St. Cooma                                     | 166349  | 1950 | Road Match             | 123m                                       |
|        | BUILDERS' SUPPLIES                              | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166105  | 1950 | Road Match             | 123m                                       |
|        | DEPARTMENTAL STORES                             | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166152  |      | Road Match             | 123m                                       |
|        | DRAPERS-RETAIL                                  | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166158  |      | Road Match             | 123m                                       |
|        | FOOTWEAR RETAILERS                              | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166195  | 1950 | Road Match             | 123m                                       |
|        | FROCK SALONS                                    | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166201  |      | Road Match             | 123m                                       |
|        | PRODUCE MERCHANTS-<br>RETAIL                    | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166389  | 1950 | Road Match             | 123m                                       |
|        | STATION & FARM SUPPLIES                         | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166444  | 1950 | Road Match             | 123m                                       |
|        | WINE & SPIRIT MERCHANTS                         | Murphy, P. D. Pty. Ltd., Vale St. Cooma                                                                         | 166486  | 1950 | Road Match             | 123m                                       |
|        | COMPANY OFFICES                                 | Nimmitabel Rural Co-op. Society Ltd., Regstd.<br>Office, Vale St. Cooma                                         | 166139  | 1950 | Road Match             | 123m                                       |
|        | TRACTOR DEALERS,<br>REPAIRERS & SERVICEMEN      | Norris' Garage (Agent, Ferguson Tractors), Vale St. Cooma                                                       | 166467  | 1950 | Road Match             | 123m                                       |
|        | REFRIGERATION DEALERS & SERVICEMEN              | Norris' Garage (Agent, Kelvinator), Vale St. Cooma                                                              | 166415  | 1950 | Road Match             | 123m                                       |
|        | CYCLE DEALERS, REPAIRERS<br>& ACCESSORIES       | Norris' Garage (Agent, Speedwell), Vale St.<br>Cooma                                                            | 166143  | 1950 | Road Match             | 123m                                       |
|        | INSURANCE AGENTS                                | Norris' Garage (Agents, Licences and General<br>Insrnce. Co., London Guarantee Insrnce. Co.),<br>Vale St. Cooma | 166272  | 1950 | Road Match             | 123m                                       |
|        | RADIO DEALERS &<br>SERVICEMEN                   | Norris' Garage (Agents, Stromberg-Carlson), Vale<br>St Cooma                                                    | 166400  | 1950 | Road Match             | 123m                                       |
|        | MOTOR ACCESSORIES<br>DEALERS                    | Norris' Garage, Vale St. Cooma                                                                                  | 166324  | 1950 | Road Match             | 123m                                       |
|        | MOTOR BODY BUILDERS                             | Norris' Garage, Vale St. Cooma                                                                                  | 166327  | 1950 | Road Match             | 123m                                       |
|        | MOTOR BUS PROPRIETORS                           | Norris' Garage, Vale St. Cooma                                                                                  | 166329  | 1950 | Road Match             | 123m                                       |
|        | MOTOR CYCLE DEALERS,<br>REPAIRERS & ACCESSORIES | Norris' Garage, Vale St. Cooma                                                                                  | 166336  | 1950 | Road Match             | 123m                                       |
|        | MOTOR GARAGES &<br>ENGINEERS                    | Norris' Garage, Vale St. Cooma                                                                                  | 166343  | 1950 | Road Match             | 123m                                       |
|        | MOTOR PAINTERS & PANEL<br>BEATERS               | Norris' Garage, Vale St. Cooma                                                                                  | 166357  | 1950 | Road Match             | 123m                                       |
|        | MOTOR TRIMMERS                                  | Norris' Garage, Vale St. Cooma                                                                                  | 166363  | 1950 | Road Match             | 123m                                       |
|        | TYRE DEALERS,<br>RETREADERS &<br>VULCANIZERS    | Norris' Garage, Vale St. Cooma                                                                                  | 166474  | 1950 | Road Match             | 123m                                       |
|        | MOTOR OIL & SPIRIT<br>MERCHANTS                 | Norris, J. A. (Agent, Caltex Oil (Aust.) Pty. Ltd.),<br>Vale St. Cooma                                          | 166351  | 1950 | Road Match             | 123m                                       |
|        | WELDERS-ELECTRIC & OXY                          | Norris's Garage, Vale St. Cooma                                                                                 | 166485  | 1950 | Road Match             | 123m                                       |
|        | SAWMILLERS                                      | Peters Bros., Vale St. Cooma                                                                                    | 166422  | 1950 | Road Match             | 123m                                       |
|        | TIMBER MERCHANTS                                | Peters Bros., Vale St. Cooma                                                                                    | 166458  | 1950 | Road Match             | 123m                                       |
|        | GOVERNMENT<br>DEPARTMENTS                       | Post Office, Vale St. Cooma                                                                                     | 166225  | 1950 | Road Match             | 123m                                       |
|        | MERCERS & GENT.'S<br>OUTFITTERS                 | Pryces, Sidney, Vale St. Cooma                                                                                  | 166296  | 1950 | Road Match             | 123m                                       |
|        | OUTFITTERS-LADIES' &<br>CHILDREN'S              | Pryces, Sidney, Vale St. Cooma                                                                                  | 166370  | 1950 | Road Match             | 123m                                       |
|        | TAILORS-MEN'S & LADIES'                         | Pryces,Sidney, Vale St. Cooma                                                                                   | 166449  | 1950 | Road Match             | 123m                                       |

| Map Id | Business Activity                  | Premise                                                                                                   | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|------|------------------------|--------------------------------------------|
| 12     | INSURANCE AGENTS                   | Rohr, J. W. (Agent, Cornbill Insrnce. Co. Ltd.,<br>Commercial Union Assrnce. Co. Ltd.), Vale St.<br>Cooma | 166268  | 1950 | Road Match             | 123m                                       |
|        | FURNITURE-HOUSEHOLD-<br>RETAIL     | Williams, B. J. and Son, Vale St. Cooma                                                                   | 166221  | 1950 | Road Match             | 123m                                       |
| 13     | BUILDERS & CONTRACTORS             | Fleming, G., Denison St., Cooma                                                                           | 195411  | 1961 | Road Match             | 131m                                       |
|        | BUILDERS & BUILDING<br>CONTRACTORS | Campbell, L., Denison St. Cooma                                                                           | 166100  | 1950 | Road Match             | 131m                                       |
|        | BUILDERS & BUILDING<br>CONTRACTORS | Fleming, G., Denison St. Cooma                                                                            | 166101  | 1950 | Road Match             | 131m                                       |

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

# **Dry Cleaners, Motor Garages & Service Stations**





# **Historical Business Directories**

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

| Map Id | Business Activity                                           | Premise                                                  | Ref No. | Year | Location<br>Confidence | Distance to<br>Property<br>Boundary or<br>Road<br>Intersection | Direction  |
|--------|-------------------------------------------------------------|----------------------------------------------------------|---------|------|------------------------|----------------------------------------------------------------|------------|
| 1      | DRY CLEANERS & PRESSERS.                                    | Snowy Laundry., 23 Albert St., Cooma 2630                | 145874  | 1991 | Premise Match          | 127m                                                           | North East |
| 2      | DRY CLEANERS,<br>PRESSERS & DYERS                           | Cooma Steam Laundry, 155 Vale St., Cooma                 | 366701  | 1961 | Road<br>Intersection   | 135m                                                           | West       |
| 3      | MOTOR GARAGES & SERVICE STATIONS                            | Southern Service Centre., 54 Bombala St.,<br>Cooma 2630  | 146126  | 1991 | Premise Match          | 439m                                                           | North West |
|        | MOTOR GARAGES<br>&/OR ENGINEERS<br>&/OR SERVICE<br>STATIONS | Southern Service Centre, 54 Bombala St.,<br>Cooma 2630   | 154827  | 1982 | Premise Match          | 439m                                                           | North West |
|        | MOTOR GARAGES & ENGINEERS                                   | Southern Service Station, 54 Bombala St.<br>Cooma 2630   | 585476  | 1970 | Premise Match          | 439m                                                           | North West |
|        | MOTOR GARAGES & ENGINEERS                                   | Southern Service Station, 54 Bombala St.,<br>Cooma       | 195907  | 1961 | Premise Match          | 439m                                                           | North West |
| 4      | MOTOR GARAGES & SERVICE STATIONS                            | Kennedy's Discount Tyres., 41 Bombala St.,<br>Cooma 2630 | 146122  | 1991 | Premise Match          | 493m                                                           | North West |

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

#### Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

| Map Id | Business Activity                                        | Premise                                              | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|----------------------------------------------------------|------------------------------------------------------|---------|------|------------------------|--------------------------------------------|
| 5      | MOTOR GARAGES & ENGINEERS                                | Baker-Ford Motors Pty. Ltd., Bombala St. Cooma 2630  | 585464  | 1970 | Road Match             | 0m                                         |
|        | MOTOR GARAGES &<br>ENGINEERS                             | Cooma Investments Pty. Ltd., Bombala St. Cooma       | 166341  | 1950 | Road Match             | 0m                                         |
|        | MOTOR GARAGES &<br>ENGINEERS                             | Hibbard, C. B. L., Bombala St. Cooma                 | 166342  | 1950 | Road Match             | 0m                                         |
| 6      | MOTOR GARAGES &<br>ENGINEERS                             | Norris' Garage, Vale St. Cooma                       | 166343  | 1950 | Road Match             | 123m                                       |
| 7      | MOTOR GARAGES &/OR<br>ENGINEERS &/OR SERVICE<br>STATIONS | Golden Fleece Monaro, Monaro Highway., Cooma<br>2630 | 154820  | 1982 | Road Match             | 257m                                       |
|        | MOTOR GARAGES &<br>ENGINEERS                             | East Cooma Service Station, Canberra Rd. Cooma 2630  | 585470  | 1970 | Road Match             | 257m                                       |
|        | MOTOR GARAGES &<br>ENGINEERS                             | Mo-Ro Service Station, Canberra Rd., Cooma           | 195897  | 1961 | Road Match             | 257m                                       |
|        | MOTOR SERVICE<br>STATIONS-PETROL, OIL,<br>ETC.           | Mo-Ro Service Station, Canberra Rd., Cooma           | 195937  | 1961 | Road Match             | 257m                                       |

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Aerial Imagery 2020 Cooma Hospital, Bent Street, Cooma, NSW 2630



















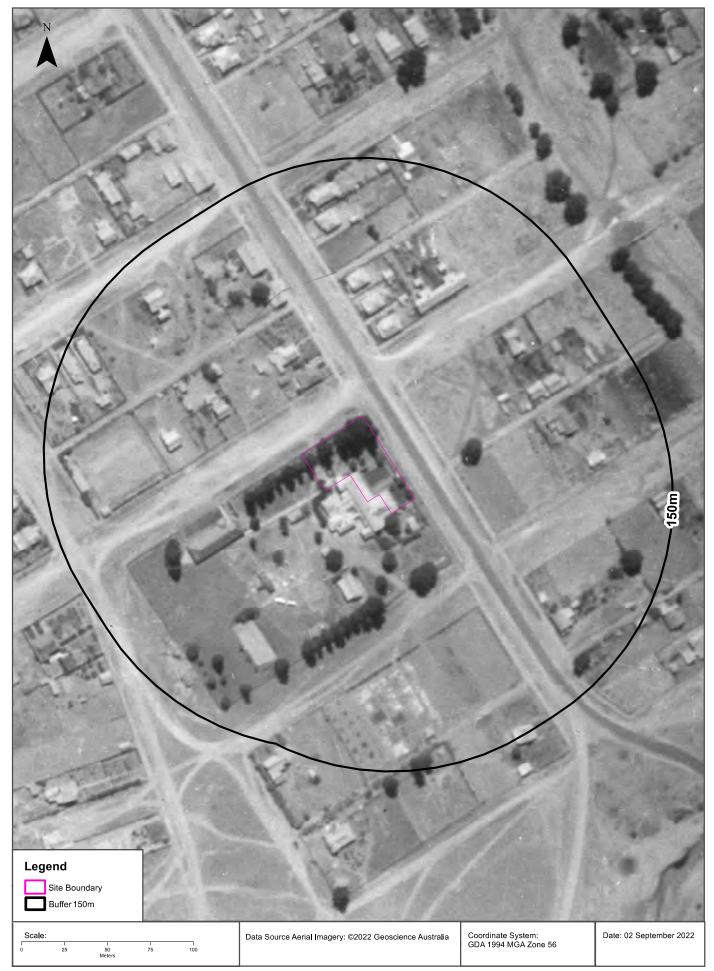






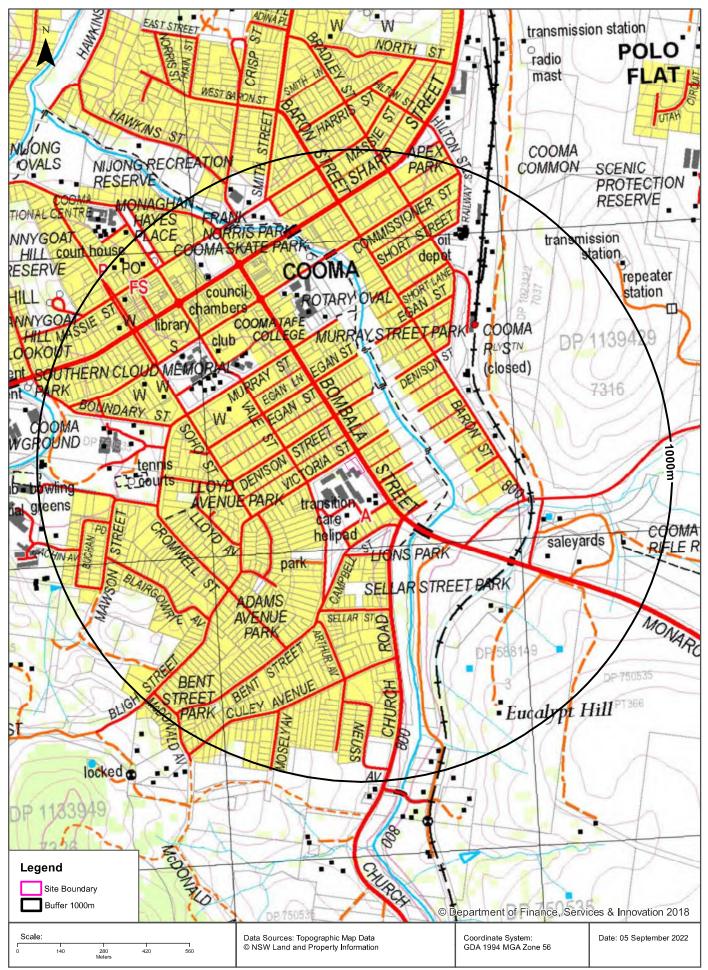






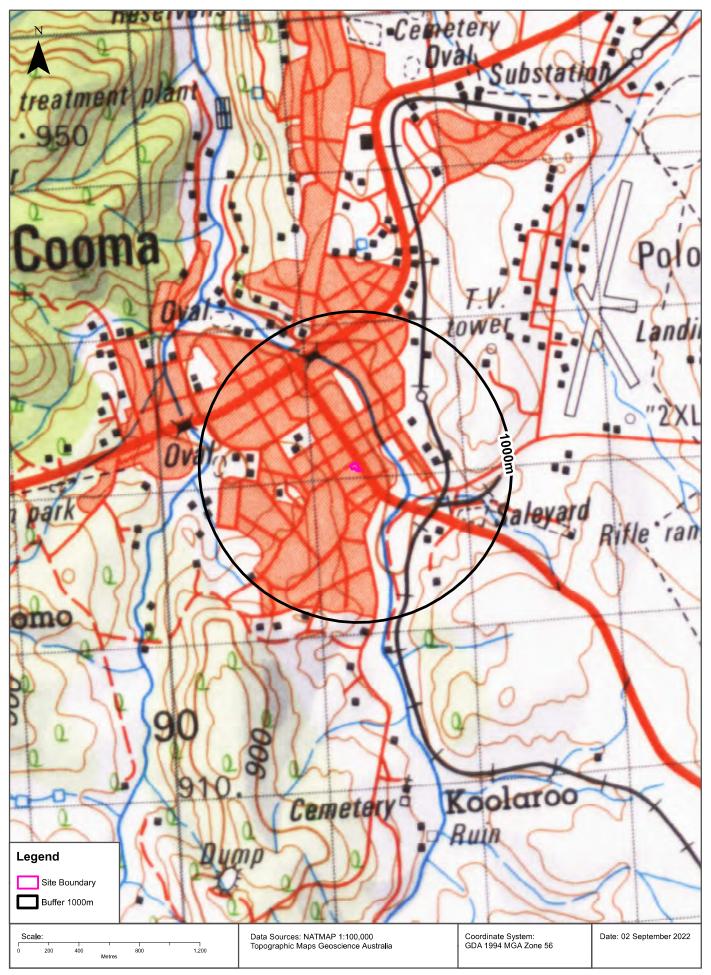




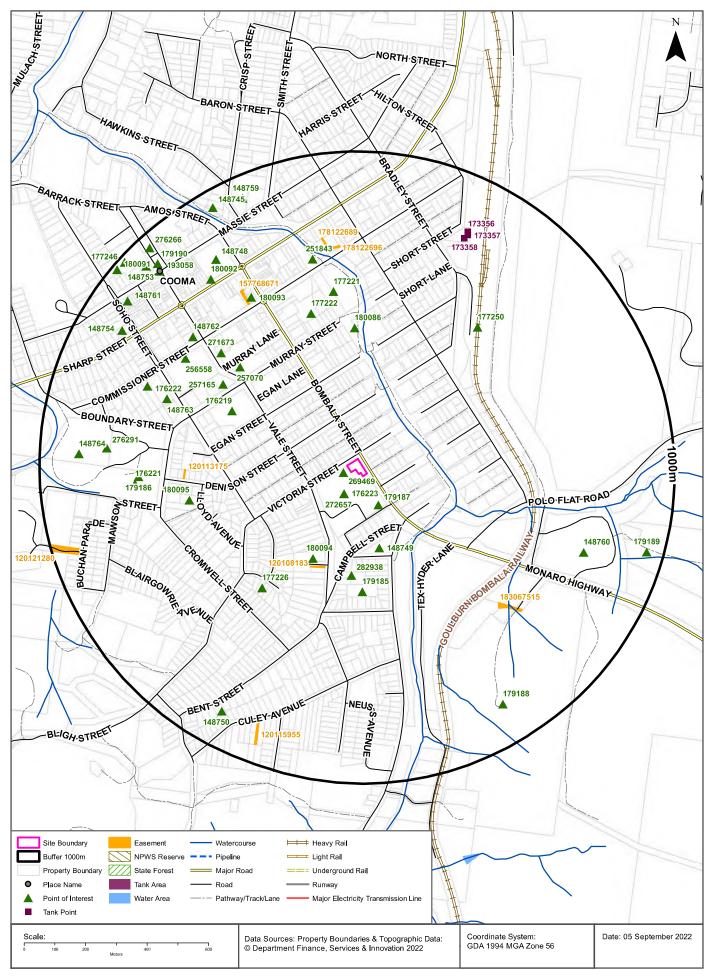






#### **Topographic Map 2015**






#### Historical Map 1977





#### **Topographic Features**





# **Topographic Features**

#### Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Points of Interest**

What Points of Interest exist within the dataset buffer?

| Map Id | Feature Type                      | Label                                       | Distance | Direction  |
|--------|-----------------------------------|---------------------------------------------|----------|------------|
| 269469 | Community Medical Centre          | COOMA COMMUNITY HEALTH CENTRE               | 22m      | West       |
| 176223 | Integrated Health Service         | COOMA HOSPITAL AND HEALTH SERVICE           | 74m      | South West |
| 272657 | Nursing Home                      | SOUTHERN NSW TRANSITIONAL AGED CARE SERVICE | 74m      | South West |
| 179187 | Ambulance Station                 | COOMA AMBULANCE STATION                     | 106m     | South East |
| 148749 | Park                              | LIONS PARK                                  | 238m     | South      |
| 180094 | Park                              | Park                                        | 306m     | South West |
| 282938 | Nursing Home                      | SOUTHERN NSW TRANSITIONAL AGED CARE SERVICE | 324m     | South      |
| 179185 | Park                              | SELLAR STREET PARK                          | 375m     | South      |
| 176219 | Place Of Worship                  | CATHOLIC CHURCH                             | 414m     | North West |
| 180086 | Park                              | MURRAY STREET PARK                          | 427m     | North      |
| 257070 | Combined Primary-Secondary School | ST PATRICK'S PARISH SCHOOL                  | 474m     | North West |
| 177226 | Park                              | ADAMS AVENUE PARK                           | 475m     | South West |
| 257165 | Combined Primary-Secondary School | ST PATRICK'S PARISH SCHOOL                  | 483m     | North West |
| 177222 | TAFE College                      | COOMA TAFE COLLEGE                          | 497m     | North      |
| 180095 | Park                              | LLOYD AVENUE PARK                           | 524m     | West       |
| 177221 | Sports Field                      | ROTARY OVAL                                 | 550m     | North      |
| 271673 | Club                              | COOMA EX-SERVICES CLUB                      | 550m     | North West |
| 177250 | Railway Station                   | COOMA RAILWAY STATION                       | 579m     | North East |
| 148763 | Place Of Worship                  | UNITING CHURCH                              | 624m     | West       |
| 180093 | Local Government Chambers         | COOMA-MONARO SHIRE COUNCIL                  | 630m     | North West |
| 256558 | Primary School                    | COOMA PUBLIC SCHOOL                         | 631m     | North West |
| 148762 | Library                           | COOMA LIBRARY                               | 653m     | North West |
| 251843 | Sports Court                      | COOMA SKATE PARK                            | 666m     | North      |
| 179186 | Community Facility                | COOMA ROYAL TENNIS CLUB                     | 679m     | West       |
| 176221 | Sports Court                      | TENNIS COURTS                               | 693m     | West       |
| 176222 | Place Of Worship                  | ANGLICAN CHURCH                             | 698m     | West       |
| 148760 | Stock Sale Yard                   | COOMA-MONARO REGIONAL SALEYARDS             | 749m     | East       |
| 180092 | Tourist Information Centre        | COOMA VISITORS CENTRE                       | 751m     | North West |
| 276291 | Community Facility                | COOMA MULTI FUNCTION CENTRE                 | 783m     | West       |
| 148748 | Park                              | CENTENNIAL PARK                             | 795m     | North West |
| 148754 | Place Of Worship                  | UNITING CHURCH                              | 853m     | North West |

| Map Id | Feature Type   | Label                        | Distance | Direction  |
|--------|----------------|------------------------------|----------|------------|
| 179188 | Homestead      | EUCALYPT HILL                | 870m     | South East |
| 148764 | Showground     | COOMA SHOWGROUND             | 872m     | West       |
| 193058 | Town           | COOMA                        | 878m     | North West |
| 148750 | Park           | BENT STREET PARK             | 884m     | South West |
| 148761 | Fire Station   | COOMA FIRE STATION           | 893m     | North West |
| 179190 | Monument       | THE CENOTAPH                 | 901m     | North West |
| 148753 | Post Office    | COOMA POST OFFICE            | 922m     | North West |
| 148759 | Swimming Pool  | COOMA FESTIVAL SWIMMING POOL | 927m     | North West |
| 179189 | Target Range   | COOMA RIFLE RANGE            | 944m     | East       |
| 148745 | Park           | FRANK NORRIS PARK            | 944m     | North West |
| 276266 | Park           | MONAGHAN HAYES PLACE         | 957m     | North West |
| 177246 | Court House    | COOMA COURT HOUSE            | 980m     | North West |
| 180091 | Police Station | COOMA POLICE STATION         | 983m     | North West |

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

# **Topographic Features**

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### Tanks (Areas)

What are the Tank Areas located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

| Map Id | Tank Type            | Status | Name | Feature Currency | Distance | Direction |
|--------|----------------------|--------|------|------------------|----------|-----------|
| N/A    | No records in buffer |        |      |                  |          |           |

#### Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

| Map Id | Tank Type | Status      | Name | Feature Currency | Distance | Direction  |
|--------|-----------|-------------|------|------------------|----------|------------|
| 173358 | Undefined | Operational |      | 08/05/2001       | 798m     | North East |
| 173357 | Undefined | Operational |      | 08/05/2001       | 812m     | North East |
| 173356 | Undefined | Operational |      | 08/05/2001       | 820m     | North East |

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Major Easements**

#### What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

| Map Id    | Easement Class | Easement Type | Easement Width | Distance | Direction  |
|-----------|----------------|---------------|----------------|----------|------------|
| 120108183 | Primary        | Undefined     |                | 318m     | South      |
| 120113175 | Primary        | Undefined     |                | 525m     | West       |
| 183067515 | Primary        | Right of way  | Variable       | 598m     | South East |
| 157768671 | Primary        | Right of way  | 6m             | 614m     | North West |
| 178122689 | Primary        | Right of way  | 4.57m          | 688m     | North      |
| 178122696 | Primary        | Right of way  | 4.57m          | 688m     | North      |
| 120115955 | Primary        | Undefined     |                | 862m     | South      |
| 120121280 | Primary        | Undefined     |                | 910m     | West       |

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

# **Topographic Features**

#### Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **State Forest**

What State Forest exist within the dataset buffer?

| State Forest Number | State Forest Name    | Distance | Direction |
|---------------------|----------------------|----------|-----------|
| N/A                 | No records in buffer |          |           |

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **National Parks and Wildlife Service Reserves**

What NPWS Reserves exist within the dataset buffer?

| Reserve Number | Reserve Type         | Reserve Name | Gazetted Date | Distance | Direction |
|----------------|----------------------|--------------|---------------|----------|-----------|
| N/A            | No records in buffer |              |               |          |           |

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Elevation Contours (m AHD)**





# Hydrogeology & Groundwater

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### Hydrogeology

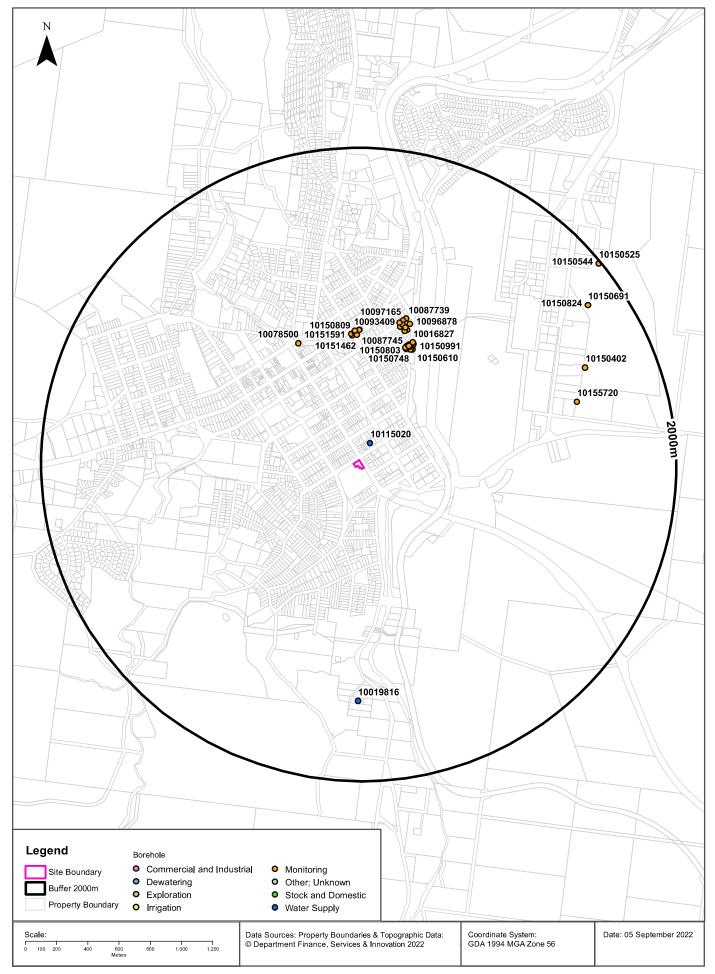
Description of aquifers within the dataset buffer:

| Description                                                               | Distance | Direction |
|---------------------------------------------------------------------------|----------|-----------|
| Fractured or fissured, extensive aquifers of low to moderate productivity | 0m       | On-site   |

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018


Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

| Prohibition<br>Area No. | Prohibition          | Distance | Direction |
|-------------------------|----------------------|----------|-----------|
| N/A                     | No records in buffer |          |           |

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

#### **Groundwater Boreholes**





# Hydrogeology & Groundwater

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Groundwater Boreholes**

#### Boreholes within the dataset buffer:

| NGIS Bore<br>ID | NSW Bore<br>ID | Bore Type    | Status      | Drill Date | Bore Depth<br>(m) | Reference<br>Elevation | Height<br>Datum | Salinity<br>(mg/L) | Yield<br>(L/s) | SWL<br>(mbgl) | Distance | Direction     |
|-----------------|----------------|--------------|-------------|------------|-------------------|------------------------|-----------------|--------------------|----------------|---------------|----------|---------------|
| 10115020        | GW403981       | Water Supply | Unknown     | 16/07/1993 | 30.00             |                        | AHD             |                    |                |               | 130m     | North<br>East |
| 10150803        | GW417508       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 775m     | North         |
| 10152702        | GW417510       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 780m     | North         |
| 10150993        | GW417507       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 783m     | North<br>East |
| 10150748        | GW417506       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 784m     | North<br>East |
| 10152657        | GW417504       | Monitoring   | Functioning | 05/08/2012 | 7.80              |                        | AHD             |                    |                |               | 786m     | North<br>East |
| 10150610        | GW417515       | Monitoring   | Functioning | 04/05/2010 | 10.00             |                        | AHD             |                    |                |               | 787m     | North<br>East |
| 10151994        | GW417505       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 790m     | North         |
| 10151462        | GW417834       | Monitoring   | Functioning | 24/01/2002 | 6.00              |                        | AHD             |                    |                |               | 798m     | North         |
| 10152094        | GW417513       | Monitoring   | Functioning | 04/05/2010 | 15.00             |                        | AHD             |                    |                |               | 798m     | North<br>East |
| 10154947        | GW417513       | Monitoring   | Proposed    | 04/05/2010 | 10.00             |                        | AHD             |                    |                |               | 798m     | North<br>East |
| 10152784        | GW417512       | Monitoring   | Functioning | 04/05/2010 | 10.00             |                        | AHD             |                    |                |               | 800m     | North<br>East |
| 10151853        | GW417830       | Monitoring   | Unknown     | 24/03/1999 | 6.00              |                        | AHD             |                    |                |               | 801m     | North         |
| 10151029        | GW417501       | Monitoring   | Functioning | 05/08/2012 | 7.90              |                        | AHD             |                    |                |               | 802m     | North<br>East |
| 10151760        | GW417502       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 804m     | North<br>East |
| 10152792        | GW417503       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 806m     | North<br>East |
| 10150800        | GW417829       | Monitoring   | Unknown     | 23/03/1999 | 1.70              |                        | AHD             |                    |                |               | 808m     | North         |
| 10152056        | GW417511       | Monitoring   | Functioning | 04/05/2010 | 10.00             |                        | AHD             |                    |                |               | 808m     | North<br>East |
| 10151591        | GW417833       | Monitoring   | Functioning | 24/01/2002 | 6.00              |                        | AHD             |                    |                |               | 809m     | North         |
| 10151217        | GW417828       | Monitoring   | Functioning | 23/03/1999 | 1.50              |                        | AHD             |                    |                |               | 813m     | North         |
| 10151666        | GW417827       | Monitoring   | Functioning | 23/03/1999 | 3.00              |                        | AHD             |                    |                |               | 813m     | North         |
| 10151444        | GW417514       | Monitoring   | Functioning | 04/05/2010 | 13.10             |                        | AHD             |                    |                |               | 816m     | North<br>East |
| 10150809        | GW417831       | Monitoring   | Unknown     | 24/03/1999 | 6.20              |                        | AHD             |                    |                |               | 818m     | North         |
| 10150991        | GW417500       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 821m     | North<br>East |
| 10151739        | GW417825       | Monitoring   | Functioning | 24/03/1999 | 6.00              |                        | AHD             |                    |                |               | 822m     | North         |
| 10151866        | GW417826       | Monitoring   | Functioning | 23/03/1999 | 6.20              |                        | AHD             |                    |                |               | 828m     | North         |
| 10152876        | GW417509       | Monitoring   | Functioning | 05/08/2012 | 8.00              |                        | AHD             |                    |                |               | 828m     | North<br>East |
| 10151652        | GW417832       | Monitoring   | Functioning | 24/03/1999 | 6.00              |                        | AHD             |                    |                |               | 831m     | North         |
| 10151140        | GW417835       | Monitoring   | Functioning | 11/05/2004 | 5.80              |                        | AHD             |                    |                |               | 833m     | North         |
| 10078500        | GW416195       | Monitoring   | Functional  | 10/09/2010 | 3.00              |                        | AHD             |                    |                |               | 842m     | North<br>West |

| NGIS Bore<br>ID | NSW Bore<br>ID | Bore Type    | Status      | Drill Date | Bore Depth<br>(m) | Reference<br>Elevation |     | Salinity<br>(mg/L) | Yield<br>(L/s) | SWL<br>(mbgl) | Distance | Direction     |
|-----------------|----------------|--------------|-------------|------------|-------------------|------------------------|-----|--------------------|----------------|---------------|----------|---------------|
| 10087745        | GW416334       | Monitoring   | Functioning | 09/08/2011 | 10.00             |                        | AHD |                    |                |               | 876m     | North         |
| 10016827        | GW416371       | Monitoring   | Functioning | 09/08/2011 | 11.50             |                        | AHD |                    |                |               | 887m     | North         |
| 10093409        | GW416413       | Monitoring   | Functioning | 06/09/2012 | 9.60              |                        | AHD |                    |                |               | 893m     | North         |
| 10064110        | GW416318       | Monitoring   | Functioning | 09/08/2011 | 15.50             |                        | AHD |                    |                |               | 896m     | North         |
| 10100718        | GW416335       | Monitoring   | Functioning | 09/08/2011 | 14.50             |                        | AHD |                    |                |               | 898m     | North         |
| 10097892        | GW416297       | Monitoring   | Functioning | 08/08/2011 | 15.00             |                        | AHD |                    |                |               | 910m     | North         |
| 10109442        | GW416408       | Monitoring   | Functioning | 21/02/2012 | 12.00             |                        | AHD |                    |                |               | 917m     | North         |
| 10096878        | GW416342       | Monitoring   | Functioning | 09/08/2011 | 13.00             |                        | AHD |                    |                |               | 930m     | North         |
| 10097165        | GW416411       | Monitoring   | Functioning | 21/02/2012 | 13.00             |                        | AHD |                    |                |               | 937m     | North         |
| 10087739        | GW416412       | Monitoring   | Functioning | 22/02/2012 | 3.00              |                        | AHD |                    |                |               | 954m     | North         |
| 10111167        | GW416341       | Unknown      | Functioning | 06/11/2013 | 10.00             |                        | AHD |                    |                |               | 954m     | North         |
| 10155720        | GW116451       | Monitoring   | Functioning | 29/05/2019 | 18.00             |                        | AHD |                    |                |               | 1430m    | East          |
| 10019816        | GW416423       | Water Supply | Functioning | 10/01/2013 | 42.00             |                        | AHD |                    | 0.100          | 37.00         | 1487m    | South         |
| 10150402        | GW116448       | Monitoring   | Functioning | 29/05/2019 | 12.50             |                        | AHD |                    |                |               | 1556m    | North<br>East |
| 10150691        | GW116338       | Monitoring   | Functioning | 29/05/2019 | 11.00             |                        | AHD |                    |                |               | 1770m    | North<br>East |
| 10150824        | GW116338       | Monitoring   | Functioning | 29/05/2019 | 11.00             |                        | AHD |                    |                |               | 1770m    | North<br>East |
| 10150525        | GW116336       | Monitoring   | Functioning | 27/05/2019 | 13.00             |                        | AHD |                    |                |               | 1986m    | North<br>East |
| 10150544        | GW116336       | Monitoring   | Functioning | 27/05/2019 | 13.00             |                        | AHD |                    |                |               | 1986m    | North<br>East |

Borehole Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

# Hydrogeology & Groundwater

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Driller's Logs**

Drill log data relevant to the boreholes within the dataset buffer:

| NGIS Bore ID | Drillers Log                                                                                                                                                                                                                                               | Distance | Direction  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 10078500     | 0.00m-0.20m silt, sandy with minor gravel, fine to coarse grained, slightly moist, yellow - fill 0.20m-1.80m clay, firm, slightly moist, medium plasticity, black 1.80m-3.00m silty clay, very stiff, very moist to wet, low plasticity, black, dark brown | 842m     | North West |
| 10087745     | 0.00m-0.03m Sand, light brown<br>0.03m-10.00m Schist, weathered                                                                                                                                                                                            | 876m     | North      |
| 10016827     | 0.00m-11.50m Schist, weathered                                                                                                                                                                                                                             | 887m     | North      |
| 10093409     | 0.00m-0.16m Concrete<br>0.16m-0.26m Sand, gravelly<br>0.26m-9.60m Schist                                                                                                                                                                                   | 893m     | North      |
| 10064110     | 0.00m-0.05m Bitumen at surface<br>0.05m-0.40m Fill sandy Gravel<br>0.40m-1.30m Fill,gravelling Sand.<br>1.30m-15.00m Schist, bedrock                                                                                                                       | 896m     | North      |
| 10100718     | 0.00m-0.10m Bitumen at surface<br>0.10m-0.70m Sand, silty<br>0.70m-14.50m Schist, weathered                                                                                                                                                                | 898m     | North      |
| 10109442     | 0.00m-0.06m Bitamen<br>0.06m-12.00m Schist, differing degrees of hardness                                                                                                                                                                                  | 917m     | North      |
| 10096878     | 0.00m-0.30m Sand, silty, fine grained<br>0.30m-0.40m Sand, med grained<br>0.40m-13.00m Schist, weathered grey                                                                                                                                              | 930m     | North      |
| 10097165     | 0.00m-0.25m Bitamen<br>0.25m-1.70m Fill<br>1.70m-4.70m Schist<br>4.70m-13.00m Silty clay                                                                                                                                                                   | 937m     | North      |
| 10087739     | 0.00m-0.05m Bitamen<br>0.05m-3.00m Schist                                                                                                                                                                                                                  | 954m     | North      |
| 10111167     | 0.00m-0.10m Bitamen<br>0.10m-0.30m Sand, gravelly, med brown<br>0.30m-10.00m Schist, weathered, grey                                                                                                                                                       | 954m     | North      |

Drill Log Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en





# Geology

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Geological Units**

What are the Geological Units within the dataset buffer?

| Unit Code | Unit Name                             | Description                                                                                                                                                                                                                                                                              | Unit Stratigraphy                                                                                         | Age                                                     | Dominant Lithology | Distance |
|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------|----------|
| Scoc      | Cooma Granodiorite                    | Biotite granite, foliated<br>granite, leucogranite,<br>diorite, tonalitic gneiss.                                                                                                                                                                                                        | Cooma<br>Supersuite/Cooma<br>Suite//Cooma<br>Granodiorite//                                               | Pridoli (base) to<br>Pridoli (top)                      | Granite            | 0m       |
| Ouuc_s    | Cooma Metamorphic<br>Complex - schist | Mica schist, biotite schist,<br>andalusite-sillimanite<br>bearing schist, orthoclase-<br>cordierite knotted schists.                                                                                                                                                                     | /Ungrouped Ordovician<br>units//Cooma<br>Metamorphic<br>Complex/Cooma<br>Metamorphic Complex -<br>schist/ | Early Ordovician<br>(base) to Early<br>Ordovician (top) | Schist             | 243m     |
| Gmom      | Monaro Volcanics                      | Medium- to very coarse-<br>grained porphyritic dolerite,<br>massive to vesicular dark<br>blue-grey to black<br>porphyritic basalt, coarse-<br>to very fine-grained.<br>Lacustrine to fluvial<br>unconsolidated<br>sedimentary rocks and<br>silcrete form the sub-<br>basaltic component. | /Monaro Volcanic<br>Complex//Monaro<br>Volcanics//                                                        | Ypresian (base) to<br>Rupelian (top)                    | Dolerite           | 586m     |

#### **Linear Geological Structures**

What are the Dyke, Sill, Fracture, Lineament and Vein trendlines within the dataset buffer?

| Map ID      | Feature Description | Map Sheet Name | Distance |
|-------------|---------------------|----------------|----------|
| No Features |                     |                |          |

# What are the Faults, Shear zones or Schist zones, Intrusive boundaries & Marker beds within the dataset buffer?

| Map ID      | Boundary Type | Description | Map Sheet Name | Distance |
|-------------|---------------|-------------|----------------|----------|
| No Features |               |             |                |          |

Geological Data Source: Statewide Seamless Geology v2.1, Department of Regional NSW Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

# **Naturally Occurring Asbestos Potential**

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Naturally Occurring Asbestos Potential**

Naturally Occurring Asbestos Potential within the dataset buffer:

| Potential                  | Sym | Strat Name | Group | Formation | Scale | Min Age | Max Age | Rock Type | Dom Lith | Description | Dist | Dir |
|----------------------------|-----|------------|-------|-----------|-------|---------|---------|-----------|----------|-------------|------|-----|
| No<br>records in<br>buffer |     |            |       |           |       |         |         |           |          |             |      |     |

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

#### **Atlas of Australian Soils**





# Soils

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Atlas of Australian Soils**

Soil mapping units and Australian Soil Classification orders within the dataset buffer:

| Map Unit<br>Code | Soil Order | Map Unit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Distance | Direction |
|------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| LL1              | Tenosol    | Hills and plainsmulticyclic erosional landscape of hills and hillocky areas with intervening plain-like areas, the whole traversed and dissected by variously incised stream valleyssome layering of soil materials: (i) relatively higher hills and ranges of loamy soils having an A2 horizon (Um4.2) and yellow-brown earths (Gn2.44) with (Um5.41 and Um5.S1), many stones, and rock outcrops; gullies of (Dr2) and (Dy3.32 and Dy3.42) soils; (ii) relatively lower hills and hillocky areas of hard acidic red soils (Dr2.21) and (Uc6.11), (Um) soils and rock outcrops with (Dy3.4) soils on lower slopes and (Dy3.43) in depressions; (iii) undulating plain-like areas with slopes and benches of red and yellow earths including (Gn2.14, Gn2.15, and Gn2.24); (iv) stream valleys of (Um6.11), some with clay D horizons and other (Uc) and (Um) soils; (v) also remains of various soil materials such as ironstone boulders in various situations. Soil dominance is difficult to assess: the most common soils are likely to be the (D) soils as a group but their variety is such that no single (D) soil can, on present data, be regarded as dominant. | 0m       | On-site   |
| Md3              | Ferrosol   | Undulating to hilly dissected tableland with some rounded hills, flat-<br>topped ridges, and small valley plains; a multicyclic erosional landscape:<br>upper slopes generally and ridge tops of red and brown friable earths<br>(Gn3.12 and Gn3.22) with friable neutral red soils (Dr4.12) in association<br>with cracking clays (Ug5.1, especially Ug5.12, Ug5.13, and Ug5.15) on<br>mid and lower slopes, and also some dark friable earths (Gn3.41) on<br>lower slopes, and in association with valley plains of various cracking<br>clays (Ug5.1); hard neutral red soils (Dr2.12) occur on the crests of some<br>hills; stony dark porous loamy soils (Um6.21) occur on some lower hill<br>slopes; also other soils described from the area apparently code as<br>(Dd3.11 and Dd3.12), (Um6.1), and (Ug5.2).                                                                                                                                                                                                                                                                                                                                                      | 196m     | East      |

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

### Soil Landscapes of Central and Eastern NSW





## Soils

Cooma Hospital, Bent Street, Cooma, NSW 2630

#### Soil Landscapes of Central and Eastern NSW

Soil Landscapes of Central and Eastern NSW within the dataset buffer:

| Soil Code      | Name                   | Distance | Direction  |
|----------------|------------------------|----------|------------|
| <u>8725mba</u> | Murrumbidgee variant a | 0m       | On-site    |
| <u>8725df</u>  | Dry Farm               | 42m      | South West |
| <u>8725bj</u>  | Binjura                | 260m     | North East |
| <u>8725ma</u>  | Maneroo                | 373m     | East       |
| <u>8725mg</u>  | Mount Gladstone        | 776m     | South West |

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

# **Acid Sulfate Soils**

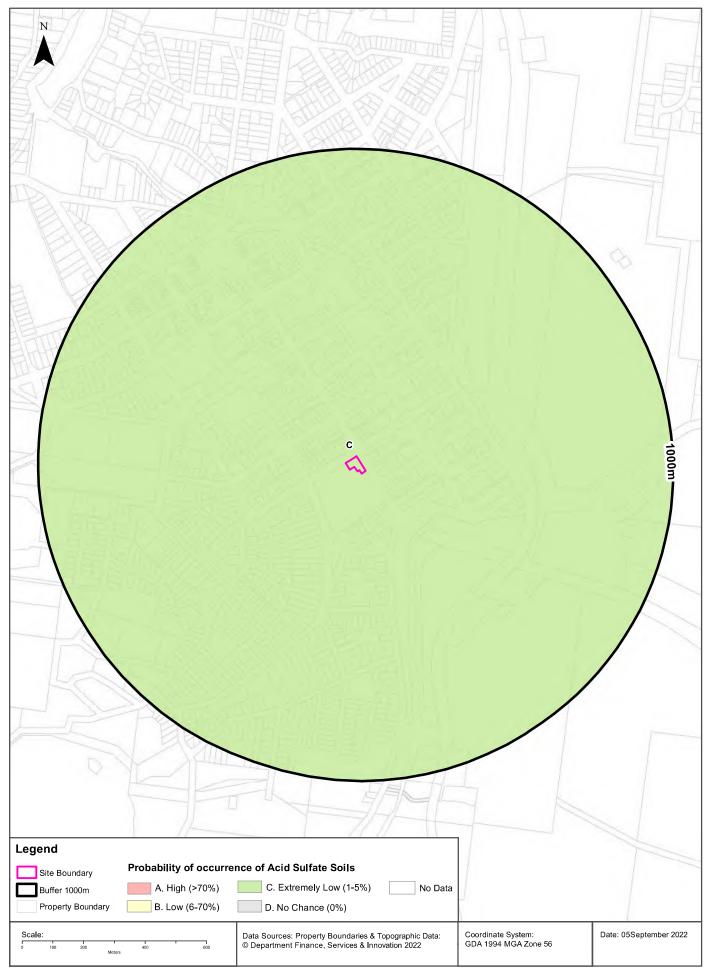
Cooma Hospital, Bent Street, Cooma, NSW 2630

#### **Environmental Planning Instrument - Acid Sulfate Soils**

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

| Soil Class | Description | EPI Name |
|------------|-------------|----------|
| N/A        |             |          |

If the on-site Soil Class is 5, what other soil classes exist within 500m?


| Soil Class | Description | EPI Name | Distance | Direction |
|------------|-------------|----------|----------|-----------|
| N/A        |             |          |          |           |

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

## **Atlas of Australian Acid Sulfate Soils**





## **Acid Sulfate Soils**

Cooma Hospital, Bent Street, Cooma, NSW 2630

### **Atlas of Australian Acid Sulfate Soils**

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

| Class | Description                                                                                                   | Distance | Direction |
|-------|---------------------------------------------------------------------------------------------------------------|----------|-----------|
| С     | Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas. | 0m       | On-site   |

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

# **Dryland Salinity**

Cooma Hospital, Bent Street, Cooma, NSW 2630

## **Dryland Salinity - National Assessment**

Is there Dryland Salinity - National Assessment data onsite?

#### No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

#### No

#### What Dryland Salinity assessments are given?

| Assessment 2000 | Assessment 2020 | Assessment 2050 | Distance | Direction |
|-----------------|-----------------|-----------------|----------|-----------|
| N/A             | N/A             | N/A             |          |           |

Dryland Salinity Data Source : National Land and Water Resources Audit

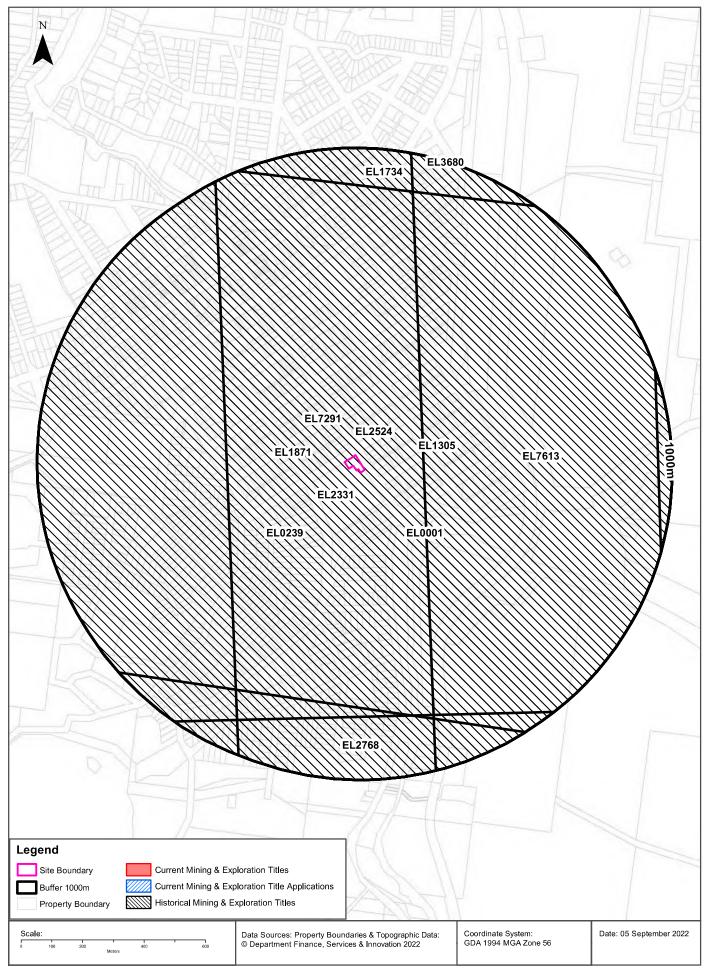
The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

# Mining

Cooma Hospital, Bent Street, Cooma, NSW 2630

## **Mining Subsidence Districts**


Mining Subsidence Districts within the dataset buffer:

| District                                                          | Distance | Direction |
|-------------------------------------------------------------------|----------|-----------|
| There are no Mining Subsidence Districts within the report buffer |          |           |

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

### **Mining & Exploration Titles**





# Mining

Cooma Hospital, Bent Street, Cooma, NSW 2630

### **Current Mining & Exploration Titles**

#### Current Mining & Exploration Titles within the dataset buffer:

| Title Ref | Holder                  | Grant Date | Expiry Date | Last<br>Renewed | Operation | Resource | Minerals | Dist | Dir |
|-----------|-------------------------|------------|-------------|-----------------|-----------|----------|----------|------|-----|
| N/A       | No records in<br>buffer |            |             |                 |           |          |          |      |     |

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

## **Current Mining & Exploration Title Applications**

Current Mining & Exploration Title Applications within the dataset buffer:

| Application<br>Ref | Applicant            | Application<br>Date | Operation | Resource | Minerals | Dist | Dir |
|--------------------|----------------------|---------------------|-----------|----------|----------|------|-----|
| N/A                | No records in buffer |                     |           |          |          |      |     |

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

# Mining

Cooma Hospital, Bent Street, Cooma, NSW 2630

# **Historical Mining & Exploration Titles**

Historical Mining & Exploration Titles within the dataset buffer:

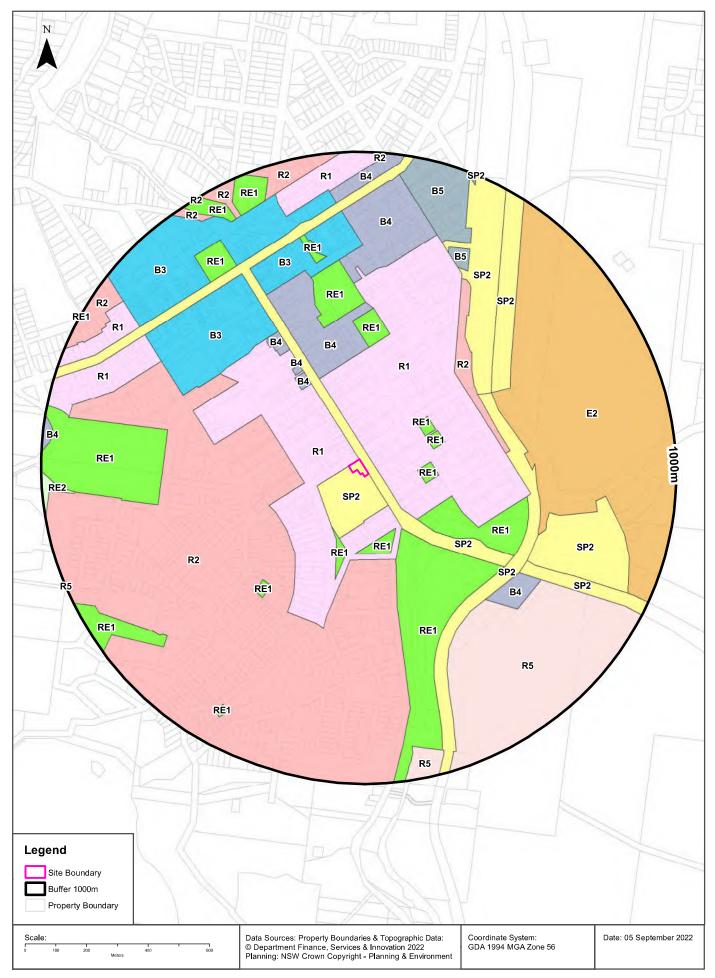
| Title Ref | Holder                                                 | Start Date  | End Date    | Resource | Minerals                      | Dist | Dir     |
|-----------|--------------------------------------------------------|-------------|-------------|----------|-------------------------------|------|---------|
| EL2524    | LACHLAN RESOURCES NL                                   | 01 Sep 1985 | 01 Dec 1988 | MINERALS | Au Cu Pb Zn                   | 0m   | On-site |
| EL2331    | JONES MINING NL                                        | 01 Nov 1984 | 01 Nov 1985 | MINERALS | Au                            | 0m   | On-site |
| EL1871    | ESSO EXPLORATION &<br>PRODUCTION AUSTRALIA<br>INC      | 01 Oct 1981 | 01 Aug 1983 | MINERALS | Pb Zn Cu Au                   | 0m   | On-site |
| EL0239    | COMINCO EXPLORATION                                    | 01 Feb 1970 | 01 Feb 1973 | MINERALS | Sn W Mo Bi                    | 0m   | On-site |
| EL1305    | OCCIDENTAL MINERALS<br>CORPORATION OF<br>AUSTRALIA     | 01 Feb 1980 | 01 Feb 1984 | MINERALS | Cu Pb Zn Au Ag                | 0m   | On-site |
| EL0001    | ELECTROLYTIC ZINC<br>COMPANY OF<br>AUSTRALASIA LIMITED | 01 Mar 1965 | 01 Sep 1966 | MINERALS | Cu Pb Zn                      | 0m   | On-site |
| EL7291    | VOLCAN AUSTRALIA<br>CORPORATION PTY LTD                | 13 Feb 2009 | 13 Feb 2013 | MINERALS | AI                            | 0m   | On-site |
| EL7613    | DORADO RESOURCES<br>PTY LTD                            | 31 Aug 2010 | 31 Aug 2012 | MINERALS | Ag Au Cu Pb Zn                | 192m | East    |
| EL2768    | TEPARA PTY LIMITED                                     | 01 Feb 1987 | 01 Dec 1988 | MINERALS | Feldspar Nepheline<br>Syenite | 794m | South   |
| EL1734    | ESSO EXPLORATION &<br>PRODUCTION AUSTRALIA<br>INC      | 01 Oct 1981 | 01 Aug 1983 | MINERALS | Pb Zn Cu Au                   | 873m | North   |
| EL3680    | CRA EXPLORATION PTY<br>LIMITED                         | 01 Nov 1990 | 01 May 1991 | MINERALS | Cu                            | 998m | North   |

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

# **State Environmental Planning Policy**

Cooma Hospital, Bent Street, Cooma, NSW 2630

## **State Significant Precincts**


#### What SEPP State Significant Precincts exist within the dataset buffer?

| Map<br>Id | Precinct             | EPI Name | Published<br>Date | Commenced<br>Date | Currency<br>Date | Amendment | Distance | Direction |
|-----------|----------------------|----------|-------------------|-------------------|------------------|-----------|----------|-----------|
| N/A       | No records in buffer |          |                   |                   |                  |           |          |           |

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

### **EPI Planning Zones**





# **Environmental Planning Instrument**

Cooma Hospital, Bent Street, Cooma, NSW 2630

# Land Zoning

What EPI Land Zones exist within the dataset buffer?

| Zone | Description                   | Purpose                              | EPI Name                                      | Published<br>Date | Commenced<br>Date | Currency<br>Date | Amendment | Distance | Direction     |
|------|-------------------------------|--------------------------------------|-----------------------------------------------|-------------------|-------------------|------------------|-----------|----------|---------------|
| SP2  | Infrastructure                | Health<br>Services<br>Facilities     | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 0m       | On-site       |
| R1   | General Residential           |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 0m       | West          |
| SP2  | Infrastructure                | Classified<br>Road                   | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 0m       | North<br>West |
| R1   | General Residential           |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 30m      | North<br>East |
| R2   | Low Density<br>Residential    |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 153m     | South<br>West |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 159m     | East          |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 186m     | South         |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 195m     | South         |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 207m     | South<br>East |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 214m     | South<br>East |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 221m     | North<br>East |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 221m     | East          |
| B4   | Mixed Use                     |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 292m     | North<br>West |
| B4   | Mixed Use                     |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 294m     | North         |
| B4   | Mixed Use                     |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 342m     | North<br>West |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 366m     | North         |
| R2   | Low Density<br>Residential    |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 413m     | North<br>East |
| B4   | Mixed Use                     |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 423m     | North<br>West |
| SP2  | Infrastructure                | Rail<br>Infrastructure<br>Facilities | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 436m     | South<br>East |
| SP2  | Infrastructure                | Rail<br>Infrastructure<br>Facilities | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 438m     | North<br>East |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 443m     | North         |
| RE1  | Public Recreation             |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 453m     | South<br>West |
| E2   | Environmental<br>Conservation |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 470m     | East          |
| SP2  | Infrastructure                | Rail<br>Infrastructure<br>Facilities | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 479m     | North<br>East |
| B3   | Commercial Core               |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 490m     | North<br>West |
| R5   | Large Lot<br>Residential      |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 555m     | South<br>East |
| B4   | Mixed Use                     |                                      | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 556m     | South<br>East |

| Zone | Description                | Purpose               | EPI Name                                      | Published<br>Date | Commenced<br>Date | Currency<br>Date | Amendment | Distance | Direction     |
|------|----------------------------|-----------------------|-----------------------------------------------|-------------------|-------------------|------------------|-----------|----------|---------------|
| B4   | Mixed Use                  |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 573m     | North         |
| SP2  | Infrastructure             | Stock & Sale<br>Yards | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 584m     | East          |
| SP2  | Infrastructure             | Classified<br>Road    | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 584m     | South<br>East |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 597m     | West          |
| B3   | Commercial Core            |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 612m     | North         |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 653m     | North         |
| R1   | General Residential        |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 698m     | West          |
| B5   | Business<br>Development    |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 703m     | North<br>East |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 745m     | North<br>West |
| B3   | Commercial Core            |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 745m     | North<br>West |
| B5   | Business<br>Development    |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 755m     | North         |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 803m     | South<br>West |
| R1   | General Residential        |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 815m     | North<br>West |
| R1   | General Residential        |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 826m     | North         |
| B4   | Mixed Use                  |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 838m     | North         |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 861m     | South<br>West |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 878m     | North<br>West |
| R2   | Low Density<br>Residential |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 880m     | North         |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 882m     | North         |
| R5   | Large Lot<br>Residential   |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 890m     | South         |
| RE2  | Private Recreation         |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 893m     | West          |
| R2   | Low Density<br>Residential |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 906m     | North<br>West |
| B4   | Mixed Use                  |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 967m     | West          |
| RE1  | Public Recreation          |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 994m     | North<br>West |
| R5   | Large Lot<br>Residential   |                       | Cooma-Monaro Local<br>Environmental Plan 2013 | 25/10/2013        | 25/10/2013        | 15/08/2014       |           | 999m     | West          |

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

### **Heritage Items**





## Heritage

Cooma Hospital, Bent Street, Cooma, NSW 2630

### **Commonwealth Heritage List**

What are the Commonwealth Heritage List Items located within the dataset buffer?

| Place Id | Name                 | Address | Place File No | Class | Status | Register<br>Date | Distance | Direction |
|----------|----------------------|---------|---------------|-------|--------|------------------|----------|-----------|
| N/A      | No records in buffer |         |               |       |        |                  |          |           |

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

### **National Heritage List**

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

| Place Id | Name                 | Address | Place File No | Class | Status | Register<br>Date | Distance | Direction |
|----------|----------------------|---------|---------------|-------|--------|------------------|----------|-----------|
| N/A      | No records in buffer |         |               |       |        |                  |          |           |

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

### State Heritage Register - Curtilages

#### What are the State Heritage Register Items located within the dataset buffer?

| Map Id  | Name                                       | Address                  | LGA                      | Listing Date | Listing No | Plan No | Distance | Direction  |
|---------|--------------------------------------------|--------------------------|--------------------------|--------------|------------|---------|----------|------------|
| 5011974 | Cooma Railway<br>Station and yard<br>group | Bradley Street,<br>Cooma | SNOWY MONARO<br>REGIONAL | 02/04/1999   | 01116      | 2532    | 438m     | North East |

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

### **Environmental Planning Instrument - Heritage**

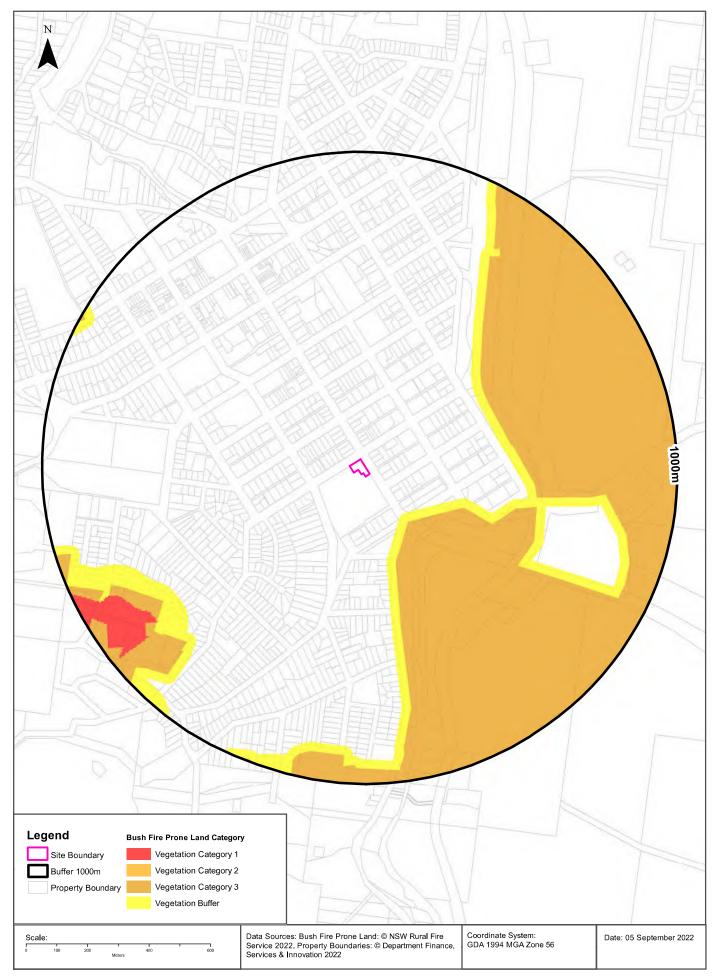
#### What are the EPI Heritage Items located within the dataset buffer?

| Map Id | Name                       | Classification | Significance | EPI Name                                         | Published<br>Date | Commenced<br>Date | Currency<br>Date | Distance | Direction  |
|--------|----------------------------|----------------|--------------|--------------------------------------------------|-------------------|-------------------|------------------|----------|------------|
| 143    | Cooma District<br>Hospital | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 0m       | On-site    |
| 170    | Cottage (rendered)         | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 82m      | North West |
| 1159   | Flats (granite)            | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 91m      | North East |

| Map Id      | Name                                                    | Classification                   | Significance | EPI Name                                         | Published<br>Date | Commenced<br>Date | Currency<br>Date | Distance | Direction     |
|-------------|---------------------------------------------------------|----------------------------------|--------------|--------------------------------------------------|-------------------|-------------------|------------------|----------|---------------|
| <b> </b> 44 | Cottage (stone)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 97m      | South East    |
| l158        | House                                                   | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 160m     | West          |
| 169         | Cottage (brick)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 185m     | North         |
| 1160        | Cottage (brick)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 191m     | South<br>West |
| 168         | Cottage                                                 | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 236m     | North East    |
| C3          | Church Hill                                             | Conservation<br>Area - General   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 245m     | North West    |
| 1157        | House (granite)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 246m     | North West    |
| 133         | House                                                   | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 265m     | East          |
| 1162        | House (granite)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 272m     | South         |
| 132         | House                                                   | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 291m     | East          |
| 1112        | St Patrick's Church and Presbytery                      | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 328m     | North West    |
| 173         | Stables - formerly<br>St Patrick's                      | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 379m     | West          |
| 138         | Cottage (brick)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 394m     | North East    |
| C6          | Soho Street<br>(Geological site)                        | Conservation<br>Area - Landscape | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 395m     | West          |
| C4          | Cooma Railway<br>Precinct                               | Conservation<br>Area - General   | State        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 413m     | North East    |
| 1145        | St Patrick's<br>Primary School                          | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 424m     | North West    |
| 1152        | Brigidine Convent                                       | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 451m     | North West    |
| 136         | Cottage (brick)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 452m     | North East    |
| 1113        | Cottage (brick)                                         | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 456m     | South         |
| l61         | House                                                   | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 466m     | West          |
| 152         | Cooma Primary<br>School                                 | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 519m     | North West    |
| 1242        | Railway bridge                                          | Item - General                   | State        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 530m     | East          |
| I51         | Civic Building -<br>Monaro Centre                       | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 534m     | North West    |
| 141         | Drill Hall - Royal<br>Australian<br>Engineer's Building | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 547m     | North West    |

| Map Id      | Name                                | Classification | Significance | EPI Name                                         | Published<br>Date | Commenced<br>Date | Currency<br>Date | Distance | Direction     |
|-------------|-------------------------------------|----------------|--------------|--------------------------------------------------|-------------------|-------------------|------------------|----------|---------------|
| 135         | Flats                               | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 558m     | North         |
| 165         | Cottage (stone)                     | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 565m     | South<br>West |
| 164         | House                               | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 585m     | South<br>West |
| 163         | House                               | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 589m     | South<br>West |
| 1140        | Presbyterian<br>manse               | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 603m     | West          |
| l139        | Uniting Church                      | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 603m     | West          |
| <b>I</b> 40 | House - Old<br>Grammar School       | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 620m     | South<br>West |
| 154         | St Paul's Anglican<br>Rectory       | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 628m     | West          |
| 153         | St Paul's Anglican<br>Church        | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 641m     | West          |
| 1156        | Shop (two storey<br>Victorian)      | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 655m     | North West    |
| 1121        | Shop - Asprey's<br>Building         | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 665m     | North West    |
| 1153        | House (Modernist)                   | ltem - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 667m     | North West    |
| 1155        | Shops (19th century)                | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 675m     | North West    |
| 162         | House (brick)                       | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 678m     | West          |
| 1116        | Shop                                | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 682m     | North West    |
| 1154        | Shops (19th century)                | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 687m     | North West    |
| 156         | Cottage (brick)                     | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 698m     | West          |
| l128        | Shop                                | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 706m     | North West    |
| 1122        | Shop - Percy's<br>Newsagency        | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 713m     | North West    |
| l117        | Centennial Park                     | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 745m     | North West    |
| l119        | Australian Hotel                    | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 752m     | North West    |
| l123        | Westpac Bank                        | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 769m     | North West    |
| 160         | Grandstand -<br>Cooma<br>Showground | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 770m     | West          |
| 146         | Cottage                             | Item - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 774m     | North         |

| Map Id | Name                                                        | Classification                 | Significance | EPI Name                                         | Published<br>Date | Commenced<br>Date | Currency<br>Date | Distance | Direction  |
|--------|-------------------------------------------------------------|--------------------------------|--------------|--------------------------------------------------|-------------------|-------------------|------------------|----------|------------|
| 1125   | Shop                                                        | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 781m     | North West |
| 1126   | Shop                                                        | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 783m     | North West |
| 145    | Cottage (Victorian)                                         | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 788m     | North      |
| l129   | Shop-formerly<br>Woolstore<br>Antiques                      | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 807m     | North West |
| 166    | Beresford House                                             | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 817m     | North West |
| 1151   | Shop                                                        | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 822m     | North West |
| 1131   | Uniting Church                                              | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 828m     | North West |
| 157    | Cottage                                                     | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 853m     | West       |
| 1150   | Shop                                                        | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 856m     | North West |
| 167    | Civic Building -<br>former Municipality<br>Council Chambers | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 859m     | North West |
| 1134   | Cottage (multi-<br>gabled)                                  | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 860m     | West       |
| 1107   | Masonic Lodge                                               | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 866m     | North West |
| C2     | Courthouse/Memor<br>ial                                     | Conservation<br>Area - General | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 870m     | North West |
| l105   | Cooma Hotel                                                 | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 884m     | North West |
| 1135   | Cottage (Victorian) and barn                                | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 887m     | West       |
| 1146   | War memorial                                                | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 894m     | North West |
| 1148   | Post office                                                 | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 896m     | North West |
| I104   | House                                                       | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 911m     | North      |
| 134    | Vine Cottage                                                | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 912m     | North West |
| l133   | Cottage (rendered)                                          | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 913m     | North West |
| I102   | Police station -<br>former Cooma<br>Police Barracks         | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 914m     | North West |
| l143   | Courthouse                                                  | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 914m     | North West |
| 1138   | Police station                                              | Item - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 914m     | North West |
| I146   | War memorial                                                | ltem - General                 | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 931m     | North West |


| Map Id | Name                                 | Classification                   | Significance | EPI Name                                         | Published<br>Date | Commenced<br>Date | Currency<br>Date | Distance | Direction  |
|--------|--------------------------------------|----------------------------------|--------------|--------------------------------------------------|-------------------|-------------------|------------------|----------|------------|
| 1115   | Cottage (brick)                      | Item - General                   | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 972m     | North      |
| C5     | Nanny Goat Hill<br>(Geological site) | Conservation<br>Area - Landscape | Local        | Cooma-Monaro Local<br>Environmental Plan<br>2013 | 25/10/2013        | 25/10/2013        | 25/10/2013       | 993m     | North West |

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

### **Natural Hazards - Bush Fire Prone Land**





## **Natural Hazards**

Cooma Hospital, Bent Street, Cooma, NSW 2630

## **Bush Fire Prone Land**

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

| Bush Fire Prone Land Category | Distance | Direction  |
|-------------------------------|----------|------------|
| Vegetation Buffer             | 167m     | South      |
| Vegetation Category 3         | 197m     | East       |
| Vegetation Category 1         | 798m     | South West |

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

### **Ecological Constraints - Vegetation & Ramsar Wetlands**





# **Ecological Constraints**

Cooma Hospital, Bent Street, Cooma, NSW 2630

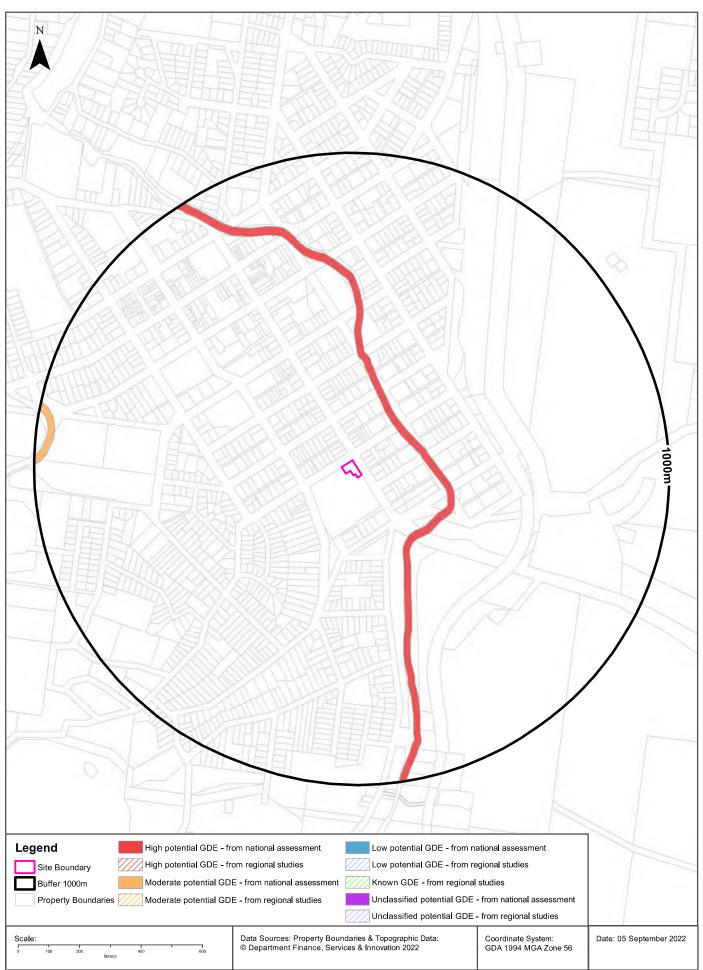
## **Vegetation of the Southern Forests**

What vegetation of the Southern Forests exists within the dataset buffer?

| Veg Code | Formation                      | Class                                    | Group                                                    | Distance | Direction  |
|----------|--------------------------------|------------------------------------------|----------------------------------------------------------|----------|------------|
| 157      | 06 Grassy Woodlands/Grasslands | 06d ST Temperate Grasslands              | ACT-Monaro Dry Grassland -<br>Bothriochloa macra         | 538m     | East       |
| 115      | 05 Dry Grass/Shrub Forests     | 05b ST Dry Tussock Grass<br>Forests      | South East Tablelands Dry Shrub-<br>Tussock Grass Forest | 816m     | South West |
| 73       | 05 Dry Grass/Shrub Forests     | 05d Central ST Dry Grass/Shrub<br>Forest | Eastern Tableland Dry Shrub-<br>Grass Forest             | 920m     | South East |

Vegetation of the Southern Forests: NSW Office of Environment and Heritage Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

### **Ramsar Wetlands**


What Ramsar Wetland areas exist within the dataset buffer?

| Map Id | Ramsar Name          | Wetland Name | Designation Date | Source | Distance | Direction |
|--------|----------------------|--------------|------------------|--------|----------|-----------|
| N/A    | No records in buffer |              |                  |        |          |           |

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

## **Ecological Constraints - Groundwater Dependent Ecosystems Atlas**





# **Ecological Constraints**

Cooma Hospital, Bent Street, Cooma, NSW 2630

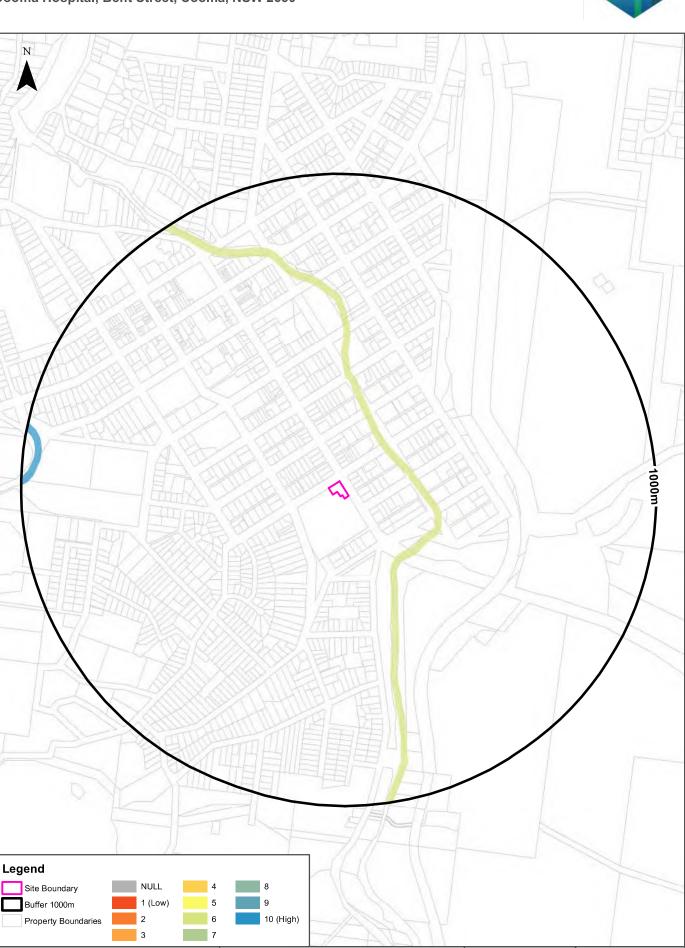
### **Groundwater Dependent Ecosystems Atlas**

| Туре    | GDE Potential                                     | Geomorphology                                                               | Ecosystem<br>Type | Aquifer Geology | Distance | Direction  |
|---------|---------------------------------------------------|-----------------------------------------------------------------------------|-------------------|-----------------|----------|------------|
| Aquatic | High potential GDE - from national assessment     | Undulating upland plains with some tablular basalt relief and granite tors. | River             |                 | 175m     | North East |
| Aquatic | Moderate potential GDE - from national assessment | Undulating upland plains with some tablular basalt relief and granite tors. | River             |                 | 939m     | West       |

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

## **Ecological Constraints - Inflow Dependent Ecosystems Likelihood**

Cooma Hospital, Bent Street, Cooma, NSW 2630


N

Scale:

100

200

Meters



Data Sources: Property Boundaries & Topographic Data: © Department Finance, Services & Innovation 2022

600

400

Date: 05 September 2022

Coordinate System: GDA 1994 MGA Zone 56

# **Ecological Constraints**

Cooma Hospital, Bent Street, Cooma, NSW 2630

### Inflow Dependent Ecosystems Likelihood

| Туре    | IDE Likelihood | Geomorphology                                                               | Ecosystem Type | Aquifer Geology | Distance | Direction  |
|---------|----------------|-----------------------------------------------------------------------------|----------------|-----------------|----------|------------|
| Aquatic |                | Undulating upland plains with some tablular basalt relief and granite tors. | River          |                 | 175m     | North East |
| Aquatic | 10             | Undulating upland plains with some tablular basalt relief and granite tors. | River          |                 | 939m     | West       |

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

# **Ecological Constraints**

Cooma Hospital, Bent Street, Cooma, NSW 2630

### **NSW BioNet Atlas**

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

| Kingdom  | Class    | Scientific                            | Common                                          | NSW Conservation<br>Status | NSW Sensitivity<br>Class | Federal<br>Conservation Status | Migratory Species<br>Agreements |
|----------|----------|---------------------------------------|-------------------------------------------------|----------------------------|--------------------------|--------------------------------|---------------------------------|
| Animalia | Amphibia | Litoria aurea                         | Green and<br>Golden Bell Frog                   | Endangered                 | Not Sensitive            | Vulnerable                     |                                 |
| Animalia | Amphibia | Litoria verreauxii<br>alpina          | Alpine Tree Frog                                | Endangered                 | Not Sensitive            | Vulnerable                     |                                 |
| Animalia | Aves     | Apus pacificus                        | Fork-tailed Swift                               | Not Listed                 | Not Sensitive            | Not Listed                     | Rokamba;camba;<br>Jamba         |
| Animalia | Aves     | Artamus<br>cyanopterus<br>cyanopterus | Dusky<br>Woodswa <b>ll</b> ow                   | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Callocephalon<br>fimbriatum           | Gang-gang<br>Cockatoo                           | Vulnerable                 | Category 3               | Endangered                     |                                 |
| Animalia | Aves     | Chthonicola sagittata                 | Speckled Warbler                                | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Circus assimilis                      | Spotted Harrier                                 | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Climacteris<br>picumnus<br>victoriae  | Brown<br>Treecreeper<br>(eastern<br>subspecies) | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Daphoenositta chrysoptera             | Varied Sittella                                 | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Gallinago<br>hardwickii               | Latham's Snipe                                  | Not Listed                 | Not Sensitive            | Not Listed                     | ROKAMBA;JAMBA                   |
| Animalia | Aves     | Glossopsitta<br>pusilla               | Little Lorikeet                                 | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Haliaeetus<br>leucogaster             | White-bellied<br>Sea-Eagle                      | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Hieraaetus<br>morphnoides             | Little Eagle                                    | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Hirundapus caudacutus                 | White-throated<br>Needletail                    | Not Listed                 | Not Sensitive            | Vulnerable                     | ROKAMBA;CAMBA;<br>JAMBA         |
| Animalia | Aves     | Lophoictinia isura                    | Square-tailed Kite                              | Vulnerable                 | Category 3               | Not Listed                     |                                 |
| Animalia | Aves     | Melanodryas<br>cucullata<br>cucullata | Hooded Robin<br>(south-eastern<br>form)         | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Ninox connivens                       | Barking Owl                                     | Vulnerable                 | Category 3               | Not Listed                     |                                 |
| Animalia | Aves     | Pachycephala olivacea                 | Olive Whistler                                  | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Petroica boodang                      | Scarlet Robin                                   | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Petroica<br>phoenicea                 | Flame Robin                                     | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Aves     | Stagonopleura<br>guttata              | Diamond Firetail                                | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Mammalia | Phascolarctos<br>cinereus             | Koala                                           | Endangered                 | Not Sensitive            | Endangered                     |                                 |
| Animalia | Mammalia | Pteropus<br>poliocephalus             | Grey-headed<br>Flying-fox                       | Vulnerable                 | Not Sensitive            | Vulnerable                     |                                 |
| Animalia | Reptilia | Aprasia<br>parapulchella              | Pink-tailed<br>Legless Lizard                   | Vulnerable                 | Not Sensitive            | Vulnerable                     |                                 |
| Animalia | Reptilia | Delma impar                           | Striped Legless<br>Lizard                       | Vulnerable                 | Not Sensitive            | Vulnerable                     |                                 |
| Animalia | Reptilia | Suta flagellum                        | Little Whip Snake                               | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
|          |          |                                       |                                                 |                            |                          |                                |                                 |

| Kingdom  | Class    | Scientific                                         | Common                                | NSW Conservation<br>Status | NSW Sensitivity<br>Class | Federal<br>Conservation Status | Migratory Species<br>Agreements |
|----------|----------|----------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------------------|---------------------------------|
| Animalia | Reptilia | Tympanocryptis<br>osbornei                         | Monaro<br>Grassland<br>Earless Dragon | Endangered                 | Not Sensitive            | Not Listed                     |                                 |
| Animalia | Reptilia | Varanus<br>rosenbergi                              | Rosenberg's<br>Goanna                 | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |
| Plantae  | Flora    | Calotis<br>glandulosa                              | Mauve Burr-daisy                      | Vulnerable                 | Not Sensitive            | Vulnerable                     |                                 |
| Plantae  | Flora    | Dodonaea<br>procumbens                             | Creeping Hop-<br>bush                 | Vulnerable                 | Not Sensitive            | Vulnerable                     |                                 |
| Plantae  | Flora    | Eucalyptus<br>aggregata                            | Black Gum                             | Vulnerable                 | Not Sensitive            | Vulnerable                     |                                 |
| Plantae  | Flora    | Lepidium<br>hyssopifolium                          | Aromatic<br>Peppercress               | Endangered                 | Not Sensitive            | Endangered                     |                                 |
| Plantae  | Flora    | Leucochrysum<br>albicans var.<br>trico <b>l</b> or | Hoary Sunray                          | Not Listed                 | Not Sensitive            | Endangered                     |                                 |
| Plantae  | Flora    | Rutidosis leiolepis                                | Monaro Golden<br>Daisy                | Vulnerable                 | Not Sensitive            | Vulnerable                     |                                 |
| Plantae  | Flora    | Swainsona<br>sericea                               | Silky Swainson-<br>pea                | Vulnerable                 | Not Sensitive            | Not Listed                     |                                 |

Data does not include NSW category 1 sensitive species.

NSW BioNet: © State of NSW and Office of Environment and Heritage

# **Location Confidences**

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

| LC Code             | Location Confidence                                          |
|---------------------|--------------------------------------------------------------|
| Premise Match       | Georeferenced to the site location / premise or part of site |
| Area Match          | Georeferenced to an approximate or general area              |
| Road Match          | Georeferenced to a road or rail corridor                     |
| Road Intersection   | Georeferenced to a road intersection                         |
| Buffered Point      | A point feature buffered to x metres                         |
| Adjacent Match      | Land adjacent to a georeferenced feature                     |
| Network of Features | Georeferenced to a network of features                       |
| Suburb Match        | Georeferenced to a suburb boundary                           |
| As Supplied         | Spatial data supplied by provider                            |

#### **USE OF REPORT - APPLICABLE TERMS**

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the purchaser of the Report.

End User acknowledges and agrees that:

1.

- (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
  - (i) content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
  - (ii) content which is derived from content described in paragraph (i);
- (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
- (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
- (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
- (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
- (f) Lotsearch has not undertaken any physical inspection of the property;
- (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
- (h) the Report does not include any information relating to the actual state or condition of the Property;
- (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
- (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
- (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
  - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
  - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
  - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.



Land Title Records





**ABN: 36 092 724 251 Ph: 02 9099 7400** (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

#### Summary of Owners Report

#### Address: Cooma Hospital - Bent Street, Cooma, NSW 2630

Description: - Lot 2 D.P. 1161366

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                                                                                                                                                                                               | Reference to Title at Acquisition<br>and sale                     |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| 09.05.1904<br>(1904 to 1962)         | Gustave Thomas Carlisle Miller (Member of our Legislative<br>Assembly of New South Wales)<br>William Amess (Esquire)<br>Thomas Wren Faulkner (Esquire)<br>George Kaufline (Esquire)<br>Edwin Hayden Litchfield (Esquire)<br>Charles Solomon (Esquire)<br>Wilfred Willmoff (Esquire)<br>(As Trustees) | Volume 1532 Folio 187<br>(Crown Grant for Site for a<br>Hospital) |  |
| 17.09.1962<br>(1962 to 2010)         | The Cooma District Hospital<br>Then<br>Cooma Hospital and Area Health Service<br>Then<br>Cooma Hospital and Health Service<br>Then<br>Monaro Health Service<br>Then<br>Southern Health Service Now<br>Now<br>Southern Area Health Service                                                            | Volume 1532 Folio 187<br>Now<br>1/802513                          |  |
| 18.11.2010<br>(2010 to 2019)         | Greater Southern Area Health Service                                                                                                                                                                                                                                                                 | 1/802513<br>Now<br>2/1161366                                      |  |
| 22.10.2019<br>(2019 to Date)         | # Health Administration Corporation                                                                                                                                                                                                                                                                  | 2/1161366                                                         |  |

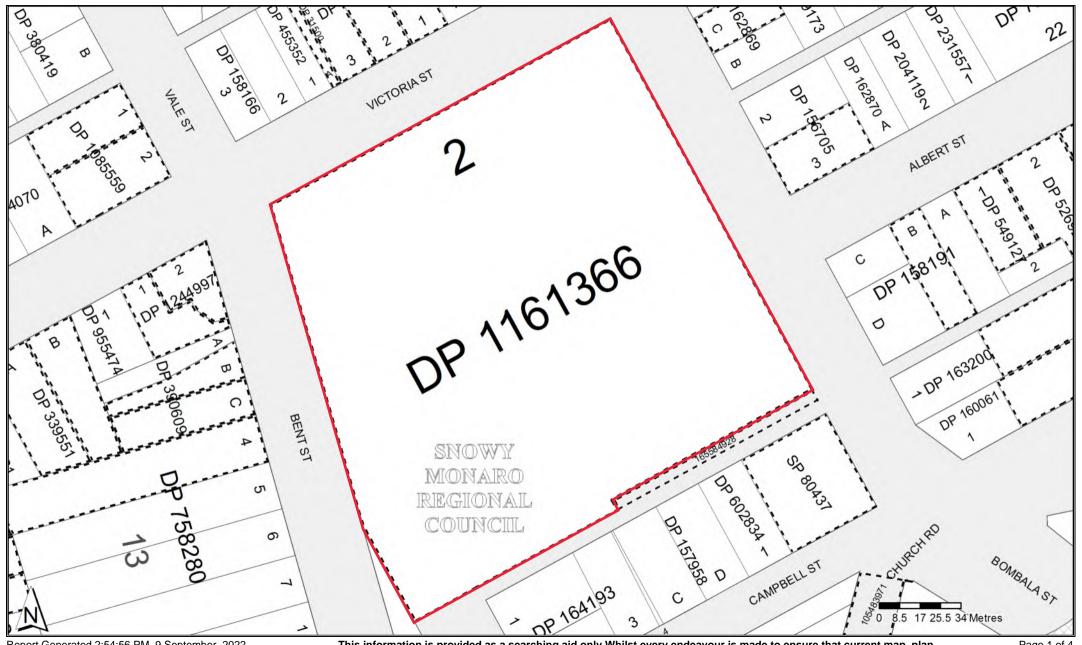
#### <u># Denotes current registered proprietor</u>

Leases: - NIL

Easements: - NIL

Yours Sincerely Taylor Wilson 9<sup>th</sup> September 2022




### Cadastral Records Enguiry Report : Lot 2 DP 1161366

Locality : COOMA

Parish : COOMA

LGA : SNOWY MONARO REGIONAL

County : BERESFORD



Report Generated 2:54:56 PM, 9 September, 2022 Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 4

| NSW | LAND<br>REGISTRY<br>SERVICES |
|-----|------------------------------|
|     |                              |

| Cadastral Records Enquiry Report : Lot 2 DP 1161366 |  |
|-----------------------------------------------------|--|
|-----------------------------------------------------|--|

Ref : Cooma Hospital

Locality : COOMA

LGA : SNOWY MONARO REGIONAL

Parish : COOMA

County : BERESFORD

| 7                                      | LGA: SNOWY MONARO RE     | GIONAL           | County : BERESFORD          |
|----------------------------------------|--------------------------|------------------|-----------------------------|
| DP31500                                | Status                   | Surv/Comp        | Purpose                     |
| Lot(s): A                              |                          |                  |                             |
| CA137661 - LC<br>DP156705<br>Lot(s): 3 | DT A DP31500             |                  |                             |
| 🎽 🧖 CA95263 - LOT                      | T 3 DP156705             |                  |                             |
| DP158191<br>Lot(s): B<br>CA95237 - LOT | R DP158191               |                  |                             |
| DP158934                               |                          |                  |                             |
| Lot(s): 1 👼 CA95295 - LOT              | T 1 DP158934             |                  |                             |
| Lot(s): 3 🖉 CA95398 - LOT              | T 3 DP158934             |                  |                             |
| Lot(s): 2<br>CA95397 - LOT             | T 2 DP158934             |                  |                             |
| DP162869<br>Lot(s): C                  |                          |                  |                             |
| P CA95452 - LOT                        | F C DP162869             |                  |                             |
| DP220479<br>Lot(s): 31, 32, 33         |                          |                  |                             |
| DP1017327 DP339551                     | REGISTERED               | SURVEY           | EASEMENT                    |
| Lot(s): A, B                           | REGISTERED               | SURVEY           | EASEMENT                    |
| DP390609<br>Lot(s): B, C               |                          |                  |                             |
| DP1017327 DP526923 Lot(s): 2           | REGISTERED               | SURVEY           | EASEMENT                    |
| CA87909 - LOT                          | C 2 DP526923             |                  |                             |
| DP549127<br>Lot(s): 1                  |                          |                  |                             |
| 🏹 🚰 CA89837 - LOT                      | T 1 DP549127             |                  |                             |
| DP758280                               |                          |                  |                             |
| Lot(s): 4 Section : 13                 | REGISTERED               | SURVEY           | EASEMENT                    |
| DP1085559<br>Lot(s): 2                 |                          |                  |                             |
| DP981506                               | HISTORICAL               | COMPILATION      | UNRESEARCHED                |
| Lot(s): 1, 2<br>DP665996<br>DP1129026  | HISTORICAL               | COMPILATION      | DEPARTMENTAL                |
| Lot(s): 32                             |                          |                  |                             |
| DP1101694<br>Lot(s): 31                | HISTORICAL               | COMPILATION      | LIMITED FOLIO CREATION      |
| DP998013<br>Lot(s): 31, 32             | HISTORICAL               | COMPILATION      | DEPARTMENTAL                |
| CA99312 - LOT                          | C 25 DP1101694           |                  |                             |
| DP1161366<br>Lot(s): 2, 3              |                          |                  |                             |
| DP802513     DP1166520     Lot(s): 1   | (HISTORICAL)             | (SURVEY)         | CONSOLIDATION               |
| CA158792 - LC DP1244997                | DT 1 DP1166520           |                  |                             |
| Lot(s): 1, 2                           | HISTORICAL               | SURVEY           | SUBDIVISION                 |
| SP80437                                |                          |                  |                             |
| 🦳 DP602834<br>🖳 DP1124540              | HISTORICAL<br>HISTORICAL | SURVEY<br>SURVEY | SUBDIVISION<br>REDEFINITION |
|                                        |                          |                  |                             |

Caution:

**ion:** This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL** 

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.



This plan should be read in conjunction with the Environmental report.

© JK ENVIRONMENTS



SERVICES



NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH \_\_\_\_\_

SEARCH DATE \_\_\_\_\_ 9/9/2022 2:42PM

| FOLIO: 1/80 | 2513        |                                                    |               |                            |
|-------------|-------------|----------------------------------------------------|---------------|----------------------------|
| Firs        | t Title(s): | OLD SYSTEM<br>VOL 10649 FOL 171<br>VOL 541 FOL 191 |               |                            |
| Prio        | r Title(s): | 1/47583                                            | A-B/366195    |                            |
|             |             | VOL 1532 FOL 187<br>CA46315                        | VOL 10649 FOL | 187                        |
| Recorded    | Number      | Type of Instrument                                 | -             | C.T. Issue                 |
| 19/6/1990   | CA46315     | CONVERSION ACTION                                  |               | FOLIO CREATED<br>EDITION 1 |
| 18/11/2010  | AF767237    | APPLICATION FOR RECEIVED OF TIT                    | -             |                            |
| 18/11/2010  | AF767238    | APPLICATION                                        |               | EDITION 2                  |
| 28/3/2011   | DP1161366   | DEPOSITED PLAN                                     |               | FOLIO CANCELLED            |

\*\*\* END OF SEARCH \*\*\*

Cooma Hospital

| Req:R437748 | /Doc:DL AF767238 /Rev | :23-Nov-2010 /N | SW LRS /Pgs | :ALL /Prt:09-Sep-2022 | 14:48 /Seq:1 of 60 |
|-------------|-----------------------|-----------------|-------------|-----------------------|--------------------|
| © Office of | the Registrar-General | /Src:InfoTrack  | /Ref:Cooma  | Hospital              | _                  |

|     | Form: 04RP                                                               |                                                   | ,              | APPLIC                                 | CATION TO                                           |                                   |       | I eave this encore -1                                 |           |                  |
|-----|--------------------------------------------------------------------------|---------------------------------------------------|----------------|----------------------------------------|-----------------------------------------------------|-----------------------------------|-------|-------------------------------------------------------|-----------|------------------|
|     | Release: 2.2<br>www.lands.nsw.go                                         | ov.au                                             | $\widehat{()}$ | NEW REG                                | ISTERED F<br>New South W                            | PROPR                             |       |                                                       |           |                  |
|     |                                                                          | Section 31B of                                    | the Real Pr    | Sectio<br>operty Act 1900              | 46C Real Prop<br>on 12(4) Truste<br>I (RP Act) auth | e Act 192!<br>orises the          |       | AF7672                                                |           |                  |
|     | by this form for<br>the Register is ma<br>STAMP DUTY                     | the establish<br>de available to<br>Office of Sta |                |                                        | of the Real<br>oon payment o                        | Property Act<br>of a fee, if any. |       | STEP SECTION 965 R                                    |           | 212              |
|     |                                                                          |                                                   |                |                                        |                                                     |                                   |       | toot details: _SEC                                    |           |                  |
| (A) | LAND                                                                     | Torrens Title                                     | 2              |                                        |                                                     |                                   | Ŀ     |                                                       |           |                  |
| (B) | REGISTERED<br>DEALING                                                    | Number                                            |                |                                        |                                                     | Torrens                           | Title |                                                       |           |                  |
| (C) | LODGED BY                                                                | Document ,<br>Collection                          |                | ddress or DX, 1<br>123005              |                                                     | DX 420 \$                         | SYD   | AYES & EDG <sup>A</sup><br>NEY PH: 9232-24<br>NTS FOR | (R<br>111 | CODE             |
| (D) | APPLICANT                                                                |                                                   | Reference      | e: CE9<br>N AREA HEAI                  |                                                     | KELL<br>Ce                        |       |                                                       |           |                  |
| (E) | PRESENT REG'D<br>PROPRIETOR                                              |                                                   | SPITAL A       | AND AREA HE                            | EALTH SER                                           | VICE                              |       |                                                       |           |                  |
| (F) | NEW REG'D<br>PROPRIETOR                                                  | GREATER                                           | SOUTHERI       | N AREA HEAI                            | LTH SERVI                                           | CE                                |       |                                                       |           |                  |
| (G) | APPLICATION UN<br>In regard to the a<br>proprietor on the<br>pursuant to | bove land<br>relevant folio                       |                | ······································ | the applicant                                       | requests the                      |       | trar General to recorning vested in the new           |           |                  |
| (H) | Please refer to An                                                       | inexure A                                         |                |                                        |                                                     |                                   |       |                                                       |           |                  |
|     | APPLICATION UN<br>In regard to the a<br>registered proprie               | bove <u>CLIC</u>                                  | K & PICK       | <pre></pre>                            | , the applic                                        | DT APPLICA                        |       | gistrar General to rec                                | cord the  | e new registered |
| (1) | DATE 10 5                                                                | EPTEMB                                            | ER 2           | 010                                    |                                                     |                                   |       |                                                       |           |                  |
| (J) |                                                                          |                                                   |                |                                        |                                                     |                                   |       | r the purposes of the whose signature app             |           |                  |
|     |                                                                          |                                                   |                |                                        |                                                     | Signature:                        | T     | 2                                                     |           |                  |
|     |                                                                          |                                                   |                |                                        |                                                     | Signatory's n<br>Signatory's ca   |       | Peter Ca<br>y: Applicant's solici                     |           | 11               |

ç

Req:R437748 /Doc:DL AF767238 /Rev:23-Nov-2010 /NSW LRS /Pgs:ALL /Prt:09-Sep-2022 14:48 /Seq:2 of 60 © Office of the Registrar-General /Src:InfoTrack /Ref:Cooma Hospital

### Annexure A to APPLICATION TO RECORD NEW REGISTERED PROPRIETOR

Parties:

5

GREATER SOUTHERN AREA HEALTH SERVICE

- - - -----

Dated

The Applicant requests the Registrar General to record the new registered proprietor on Certificate of Title Folio Identifier 1/802513, the land having vested in the new registered proprietor pursuant to:

1. On 1 June 1990 it was proclaimed that in pursuance of Section 4(2) of the Public Hospitals Act 1929 with effect from 1 June 1990 that Cooma Hospital and Area Health Service be renamed Cooma Hospital and Health Service.

2. On 1 July 1993 it was proclaimed that in pursuance of Section 13A(2) of the Public Hospitals Act 1929 with effect from 1 July 1993 that Cooma Hospital and Health  $\checkmark$  Service be amalgamated into Monaro Health Service.

3. On 1**6** March 1996 it was proclaimed that in pursuance of Section 13A(2)of the Public Hospitals Act 1929 with effect from 16 March 1996 that Monaro Health Service <sup>\*</sup> be amalgamated into Southern Health Service.

4. On 27 July 2004 it was proclaimed that in pursuance of Section 19 of the Health Services Act 1997, with effect from 27 July 2004 that the name of the service be amended from Southern Health Service to Southern Area Health Service.

5. From 20 October 2004, it was proclaimed that in pursuance of Section 20(1) of the Health Services Act 1997, with effect from 20 October 2004 Southern Area Health Service was amalgamated and the assets, rights and liabilities of Southern Area Health Service vested in Greater Southern Area Health Service.

See annexed orders.



SERVICES



NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH \_\_\_\_\_

> SEARCH DATE \_\_\_\_\_ 9/9/2022 2:42PM

| FOLIO: 2               | 2/110 | 61366                |                                                                                 |                            |
|------------------------|-------|----------------------|---------------------------------------------------------------------------------|----------------------------|
| Ŧ                      | 7irs† | t Title(s):          | VOL 10649 FOL 171 VOL 15311 FOL<br>VOL 1532 FOL 187 VOL 541 FOL 1<br>OLD SYSTEM |                            |
| F                      | rio   | r Title(s):          | 1/802513                                                                        |                            |
| Recorded               | 1     | Number               | Type of Instrument                                                              | C.T. Issue                 |
| 28/3/201               | 1     | DP1161366            | DEPOSITED PLAN                                                                  | FOLIO CREATED<br>EDITION 1 |
| 22/10/201<br>22/10/201 |       | AP409215<br>AP622937 | REQUEST<br>DEPARTMENTAL DEALING                                                 | EDITION 2                  |
| 10/7/202               | 20    | AQ232958             | CAVEAT                                                                          |                            |

\*\*\* END OF SEARCH \*\*\*

Cooma Hospital

|     | by this form for                         | REQUEST<br>New South Wales<br>Real Property Act 1900<br>Section 31B of the Real Property Act 1900 (RP Act) authorises the Registrar General to Collect the Information required<br>the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that<br>de available to any person for search upon payment of a fee, if any.                                                                |
|-----|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | All Statutory Decl<br>disclosed to perso | arations and evidence that are lodged in support of land dealings will be treated as publicly accessible and will be<br>ons upon request.                                                                                                                                                                                                                                                                                       |
| (A) | STAMP DUTY                               | If applicable. Revenue NSW use only                                                                                                                                                                                                                                                                                                                                                                                             |
| (B) | TORRENS TITLE                            | See Annexure X                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (C) | REGISTERED<br>DEALING                    | Number Torrens Title                                                                                                                                                                                                                                                                                                                                                                                                            |
| (D) | LODGED BY                                | Document<br>Collection<br>Box 47 V 123012 E DX 437 5, they<br>Reference: NSW 146ALTH SNSWCHD 32                                                                                                                                                                                                                                                                                                                                 |
| (E) | APPLICANT                                | Health Administration Corporation ABN 45 100 538 161                                                                                                                                                                                                                                                                                                                                                                            |
| (F) | NATURE OF<br>REQUEST                     | Issue of Certificates of Title                                                                                                                                                                                                                                                                                                                                                                                                  |
| (G) | Land Acquis                              | Administration Corporation has acquired the subject land pursuant to the<br>ition (Just Terms Compensation) Act 1991 and the Health Administration Act<br>y of the acquisition notice from NSW Government Gazette No. 73 dated 12th<br>n2019-2054) is attached at Annexure "Y". It is requested that the titles for<br>d land be issued in the name of the Health Administration Corporation. (1)<br>2 3 SEP 2019<br>3 SEP 2019 |
|     | DATE                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                 |

(H) I certify that I am an eligible witness and that an authorised officer of the applicant signed this dealing in my presence.
 [See note\* below].

Signature of witness: Name of witness: Address of witness of witnes

TIME:

Certified correct for the purposes of the

1900 by the authorised officer named below.

Real Property

(I) This section is to be completed where a notice of sale is required and the relevant data has been forwarded through eNOS. The applicant certifies that the eNOS data relevant to this dealing has been submitted and stored under eNOS ID No. 1866839 Full name: Shane Kenyon Signature:

\* s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation. ALL HANDWRITING MUST BE IN BLOCK CAPITALS Page 1 of \$8\_\_\_\_\_\_ 1708

ØEXTRA FEE PAISED

.

### Annexure: X to Request

### Parties:

Health Administration Corporation

### Text:

(B) TORRENS TITLE

### Being

| Lot | Section | Plan | Plan No | Vol/Folio | Auto Consol      |
|-----|---------|------|---------|-----------|------------------|
| 1   |         | DP   | 133606  |           |                  |
| A   |         | DP   | 153358  |           |                  |
| 1   |         | DP   | 233080  | 10622/131 |                  |
| 2   |         | DP   | 233080  | 10622/132 |                  |
| A   |         | DP   | 351037  | 5672/13   | being whole Auto |
| В   |         | DP   | 351037  | 5672/13   | Consol 5672-13   |
| 52  |         | DP   | 754907  | 5350/161  |                  |
| 1   | 29      | DP   | 758152  | 8434/115  |                  |
| 1   | 46      | DP   | 758468  |           |                  |
| . 2 | 46      | DP   | 758468  |           |                  |
| 3   | 46      | DP   | 758468  |           |                  |
| 4   | 46      | DP   | 758468  |           |                  |
| 5   | 46      | DP   | 758468  |           | being whole Auto |
| 6   | 46      | DP   | 758468  |           | Consol 2143-196  |
| 7   | 46      | DP   | 758468  |           |                  |
| 8   | 46      | DP   | 758468  |           |                  |
| 9   | 46      | DP   | 758468  |           |                  |
| 10  | 46      | DP   | 758468  |           |                  |
| 1   | 7       | DP   | 758710  | 8434/159  |                  |
| 4   | 7       | DP   | 758710  | 751/229   |                  |
| 2   |         | DP   | 787223  |           |                  |
| 20  |         | DP   | 818279  |           |                  |
| 21  |         | DP   | 818279  |           |                  |
| 1   |         | DP   | 936252  |           |                  |
| 1   |         | DP   | 1133188 |           |                  |
| 16  |         | DP   | 1133958 |           |                  |
| 22  |         | DP   | 1152713 |           |                  |
| 1   |         | DP   | 1160080 |           |                  |
| 2   |         | DP   | 1161366 |           |                  |
| 1   |         | DP   | 1203239 |           |                  |
| 2   |         | DP   | 1243054 |           |                  |

South

BWA

Page <u>2</u> of <u>58</u>



**REGISTRY** Title Search



NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 2/1161366

LAND

SERVICES

\_\_\_\_\_

| SEARCH DATE | TIME    | EDITION NO | DATE       |
|-------------|---------|------------|------------|
|             |         |            |            |
| 9/9/2022    | 2:41 PM | 2          | 22/10/2019 |

### LAND

LOT 2 IN DEPOSITED PLAN 1161366 AT COOMA LOCAL GOVERNMENT AREA SNOWY MONARO REGIONAL PARISH OF COOMA COUNTY OF BERESFORD TITLE DIAGRAM DP1161366

FIRST SCHEDULE

HEALTH ADMINISTRATION CORPORATION

(R AP409215)

SECOND SCHEDULE (2 NOTIFICATIONS)

\_\_\_\_\_

- 1 LAND EXCLUDES MINERALS WITHIN THE PARTS SHOWN SO INDICATED IN THE TITLE DIAGRAM - SEE CROWN GRANT AND MEMORANDUM S700000A
- \* 2 AQ232958 CAVEAT BY ESSENTIAL ENERGY

NOTATIONS

UNREGISTERED DEALINGS: NIL

\*\*\* END OF SEARCH \*\*\*

\* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.



### **Appendix C: Laboratory Results Summary Tables**





### ABBREVIATIONS AND EXPLANATIONS

### Abbreviations used in the Tables:

| ABC:<br>ACM:<br>ACM:<br>AF:<br>ANZG<br>B(a)P:<br>CEC:<br>CRC:<br>CT:<br>EILS:<br>ESLS:<br>FA:<br>GIL:<br>GSW:<br>HILS:<br>HSL-SSA:<br>kg/L<br>NA:<br>NC:<br>NEPM:<br>NHMRC:<br>NL:<br>NSL:<br>2CC | kilograms per litre<br>Not Analysed<br>Not Calculated<br>National Environmental Protection Measure<br>National Health and Medical Research Council<br>Not Limiting<br>No Set Limit | TAA:<br>TB:<br>TCA:<br>TCE:<br>TCLP:<br>TPA:<br>TS:<br>TRH:<br>TSA:<br>UCL: | Polychlorinated Biphenyls<br>Perchloroethylene (Tetrachloroethylene or Teterachloroethene)<br>pH of filtered 1:20, 1M KCL extract, shaken overnight<br>pH of filtered 1:20 1M KCl after peroxide digestion<br>Practical Quantitation Limit<br>Rinsate Sample<br>Regional Screening Levels<br>Restricted Solid Waste<br>Site Assessment Criteria<br>Specific Contaminant Concentration<br>Chromium reducible sulfur<br>Peroxide oxidisable Sulfur<br>Site Specific Assessment<br>: Site Specific Assessment<br>: Site Specific Health Screening Levels<br>Total Actual Acidity in 1M KCL extract titrated to pH6.5<br>Trip Blank<br>1,1,1 Trichloroethane (methyl chloroform)<br>Trichloroethylene (Trichloroethene)<br>Toxicity Characteristics Leaching Procedure<br>Total Potential Acidity, 1M KCL peroxide digest<br>Trip Spike<br>Total Recoverable Hydrocarbons<br>Total Sulfide Acidity (TPA-TAA)<br>Upper Level Confidence Limit on Mean Value |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                   |                                                                                                                                                                                    | -                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                   | 6                                                                                                                                                                                  | UCL:<br>USEPA<br>VOCC:                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

### **Table Specific Explanations:**

#### HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.

- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

### EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

### Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

### QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

### TABLE S1

### SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

|                         |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |          | HEAVY  | METALS |         |        |      | F                                                                                                                                                                                                                                                                                                                            | AHs                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          | ORGANOCHL                                                                                                                                                                                                    | ORINE PESTI                                                                                                                                                                      | CIDES (OCPs)                                                                                                                                         |                                                                                                                          |                                                                                              | OP PESTICIDES (OPPs                                              | )                                    |                      |
|-------------------------|-----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|---------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|----------------------|
| All data in mg/kg unles | ss stated other | wise                  | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                     | Chromium | Copper | Lead   | Mercury | Nickel | Zinc | Total<br>PAHs                                                                                                                                                                                                                                                                                                                | Carcinogenic<br>PAHs                                                                                                                                                                                                                                                                             | НСВ                                                                                                                                                                                                                                                                  | Endosulfan                                                                                                                                                                                                                               | Methoxychlor                                                                                                                                                                                                 | Aldrin &<br>Dieldrin                                                                                                                                                             | Chlordane                                                                                                                                            | DDT, DDD<br>& DDE                                                                                                        | Heptachlor                                                                                   | Chlorpyrifos                                                     | TOTAL PCBs                           | ASBESTOS FIBRES      |
| PQL - Envirolab Service | es              |                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | 1      | 1      | 0.1     | 1      | 1    | -                                                                                                                                                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                                          | 0.1                                                                                                                                                                              | 0.1                                                                                                                                                  | 0.1                                                                                                                      | 0.1                                                                                          | 0.1                                                              | 0.1                                  | 100                  |
| Site Assessment Criter  | ia (SAC)        |                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                          | 100      | 6000   | 300    | 40      | 400    | 7400 | 300                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 270                                                                                                                                                                                                                                      | 300                                                                                                                                                                                                          | 6                                                                                                                                                                                | 50                                                                                                                                                   | 240                                                                                                                      | 6                                                                                            | 160                                                              | 1                                    | Detected/Not Detecte |
| Sample Reference        | Sample<br>Depth | Sample Description    |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        |        |         |        |      |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                          |                                                                                              |                                                                  |                                      |                      |
| TP201                   | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 43       | 30     | 41     | 0.1     | 50     | 70   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP201 - [LAB_DUP]       | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 45       | 34     | 50     | 0.1     | 58     | 81   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | NA                   |
| TP201                   | 1.0-1.2         | XW Granite            | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 42       | 22     | 14     | 0.4     | 18     | 55   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | NA                   |
| TP202                   | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 47       | 43     | 38     | 0.3     | 23     | 92   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP203                   | 0-0.1           | F: Silty Sandy Gravel | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 29       | 17     | 51     | <0.1    | 28     | 53   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP203                   | 0.4-0.6         | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 35       | 59     | 24     | 0.3     | 16     | 77   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | NA                   |
| TP203                   | 1.0-1.2         | Silty clay            | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 65       | 33     | 13     | 0.1     | 31     | 52   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | NA                   |
| TP204                   | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 38       | 19     | 23     | 0.1     | 17     | 86   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP205                   | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 42       | 19     | 23     | <0.1    | 20     | 55   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP205                   | 1.0-1.2         | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 39       | 17     | 17     | 0.2     | 18     | 52   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | NA                   |
| TP206                   | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 47       | 25     | 25     | 0.2     | 34     | 97   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP207                   | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 38       | 17     | 10     | <0.1    | 17     | 37   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP207                   | 0.8-1.0         | Silty clay            | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 38       | 18     | 8      | <0.1    | 17     | 28   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | NA                   |
| TP208                   | 0-0.1           | F: Silty Clay         | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 36       | 15     | 10     | <0.1    | 16     | 40   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | Not Detected         |
| TP208                   | 0.6-0.8         | Silty clay            | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 51       | 24     | 10     | <0.1    | 23     | 39   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | NA                   |
| SDUP1                   | -               | TP205 0-0.1           | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 43       | 19     | 16     | <0.1    | 20     | 54   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | NA                   |
| SDUP1 - [LAB_DUP]       | -               | TP205 0-0.1           | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 41       | 18     | 18     | <0.1    | 19     | 53   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | NA                   |
| SDUP2                   | -               | TP201 0-0.1           | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 53       | 37     | 60     | 0.1     | 59     | 86   | <0.05                                                                                                                                                                                                                                                                                                                        | <0.5                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | <0.1                                                             | <0.1                                 | NA                   |
| SDUP2 - [LAB_DUP]       | -               | TP201 0-0.1           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                          | NA       | NA     | NA     | NA      | NA     | NA   | NA                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                               | <0.1                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                         | <0.1                                                                                                                                                                             | <0.1                                                                                                                                                 | <0.1                                                                                                                     | <0.1                                                                                         | NA                                                               | NA                                   | NA                   |
| FCF1                    | Surface         | Fill                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                          | NA       | NA     | NA     | NA      | NA     | NA   | NA                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Not Detected         |
| FCF2                    | Surface         | Fill                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                          | NA       | NA     | NA     | NA      | NA     | NA   | NA                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Detected             |
| TP205-FCF1              | 0.1-0.6         | Fill                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                          | NA       | NA     | NA     | NA      | NA     | NA   | NA                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Detected             |
| TP205-FCF2              | 1.0-1.5         | Fill                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                          | NA       | NA     | NA     | NA      | NA     | NA   | NA                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Not Detected         |
| TP205-FCF3              | 1.0-1.5         | Fill                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                          | NA       | NA     | NA     | NA      | NA     | NA   | NA                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                           | NA                                                                                                                                                                               | NA                                                                                                                                                   | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Detected             |
| Total Number of San     | nples           |                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                          | 18       | 18     | 18     | 18      | 18     | 18   | 18                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                           | 13                                                                                                                                                                               | 13                                                                                                                                                   | 13                                                                                                                       | 13                                                                                           | 12                                                               | 12                                   | 13                   |
| Maximum Value           | •               |                       | <pql< td=""><td><pql< td=""><td>65</td><td>59</td><td>60</td><td>0.4</td><td>59</td><td>97</td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td>65</td><td>59</td><td>60</td><td>0.4</td><td>59</td><td>97</td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | 65       | 59     | 60     | 0.4     | 59     | 97   | <pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<> | <pql< td=""><td>Detected</td></pql<> | Detected             |



#### Detailed (Stage 2) Site Investigation Cooma Hospital, Bent Street, Cooma, NSW E30596PT



#### TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs

| All data in mg/kg unless stated otherwise |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

| gory                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             | 25                                                                                                                                                                                                      | 50                                                                                                                                                                          | 0.2                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ° 1                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                                                                                                         |                                                                                                                                                                             | HSL-A/B: LO                                                                                                                                     | W/HIGH DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RESIDENTIAL                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| epth Sample Description                                                                     | Depth<br>Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soil Category                                                               |                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D-1.2 XW Granite                                                                            | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Sandy Grave                                                                   | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4-0.6 F: Silty Clay                                                                         | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D-1.2 Silty clay                                                                            | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D-1.2 F: Silty Clay                                                                         | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B-1.0 Silty clay                                                                            | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.1 F: Silty Clay                                                                          | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5-0.8 Silty clay                                                                            | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - TP205 0-0.1                                                                               | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - TP205 0-0.1                                                                               | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - TP201 0-0.1                                                                               | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        |                                                                                                                                                                                                         |                                                                                                                                                                             | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - TP201 0-0.1                                                                               | 0m to <1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sand                                                                        | <25                                                                                                                                                                                                     | <50                                                                                                                                                                         | <0.2                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             | 19                                                                                                                                                                                                      | 19                                                                                                                                                                          | 19                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<>                                                                                                  | <pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pql< td=""><td>3.4</td></pql<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Ppth         F: Silty Clay           0.1         F: Silty Clay           50.8         Silty Clay           -         TP205 0-0.1           -         TP205 0-0.1           -         TP201 0-0.1 | pth         Category           0.01         F: Silty Clay         Om to <1m | Category         Category           0.1         F: Silty Clay         Om to <1m                                                                                                                         | ppm         Category         Category           0.1         F: Silty Clay         Om to <1m                                                                                 | ppm         i         Category         i           0.1         F: Silty Clay         Om to <1m                                                  | pm         i         Category         Category | ppn         i         Category         i         i         Stategory         i         i           0.1         F: Silty Clay         Om to <tm< td="">         Sand         &lt;25</tm<> | ppn         i         Category         i         Category         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i<         i         i<         i< | ppn         i         Category         i         Category         i         i         Category         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i<         i<<         i<<         i<<         i<<         i<<         i<<         i<< <th< td=""><td>ppm         i         Category         i         Category         i         i         Category         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i&lt;         i&lt;         i&lt;         i&lt;         i</td></th<> | ppm         i         Category         i         Category         i         i         Category         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i<         i<         i<         i<         i |

#### HSL SOIL ASSESSMENT CRITERIA

| Sample Reference  | Sample<br>Depth | Sample Description    | Depth<br>Category | Soil Category | C <sub>6</sub> -C <sub>10</sub> (F1) | >C <sub>10</sub> -C <sub>16</sub> (F2) | Benzene | Toluene | Ethylbenzene | Xylenes | Naphthalene |
|-------------------|-----------------|-----------------------|-------------------|---------------|--------------------------------------|----------------------------------------|---------|---------|--------------|---------|-------------|
| TP201             | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP201 - [LAB_DUP] | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP201             | 1.0-1.2         | XW Granite            | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP202             | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP203             | 0-0.1           | F: Silty Sandy Gravel | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP203             | 0.4-0.6         | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP203             | 1.0-1.2         | Silty clay            | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP204             | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP205             | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP205             | 1.0-1.2         | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP206             | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP207             | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP207             | 0.8-1.0         | Silty clay            | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP208             | 0-0.1           | F: Silty Clay         | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| TP208             | 0.6-0.8         | Silty clay            | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| SDUP1             | -               | TP205 0-0.1           | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| SDUP1 - [LAB_DUP] | -               | TP205 0-0.1           | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| SDUP2             | -               | TP201 0-0.1           | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |
| SDUP2 - [LAB_DUP] | -               | TP201 0-0.1           | 0m to <1m         | Sand          | 45                                   | 110                                    | 0.5     | 160     | 55           | 40      | 3           |



### TABLE S3

### SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise

|                          |              |              | C <sub>6</sub> -C <sub>10</sub> (F1) plus<br>BTEX                       | >C <sub>10</sub> -C <sub>16</sub> (F2) plus<br>napthalene | >C <sub>16</sub> -C <sub>34</sub> (F3) | >C <sub>34</sub> -C <sub>40</sub> (F4) |
|--------------------------|--------------|--------------|-------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|----------------------------------------|
| L - Envirolab Services   |              |              | 25                                                                      | 50                                                        | 100                                    | 100                                    |
| EPM 2013 Land Use Cate   | gory         |              | RE                                                                      | SIDENTIAL, PARKLAND                                       | & PUBLIC OPEN SP                       | ACE                                    |
| Sample Reference         | Sample Depth | Soil Texture |                                                                         |                                                           |                                        |                                        |
| TP201                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | 190                                    | <100                                   |
| TP201 - [LAB_DUP]        | 0-0.1        | Fine         | <25                                                                     | <50                                                       | 210                                    | <100                                   |
| TP201                    | 1.0-1.2      | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP202                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP203                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP203                    | 0.4-0.6      | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP203                    | 1.0-1.2      | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP204                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP205                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | 190                                    | <100                                   |
| TP205                    | 1.0-1.2      | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP206                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | 110                                    | <100                                   |
| TP207                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP207                    | 0.8-1.0      | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP208                    | 0-0.1        | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| TP208                    | 0.6-0.8      | Fine         | <25                                                                     | <50                                                       | <100                                   | <100                                   |
| SDUP1                    | -            | Fine         | <25                                                                     | <50                                                       | 100                                    | <100                                   |
| SDUP1 - [LAB_DUP]        | -            | Fine         | <25                                                                     | <50                                                       | 120                                    | <100                                   |
| SDUP2                    | -            | Fine         | <25                                                                     | <50                                                       | 200                                    | 150                                    |
| SDUP2 - [LAB_DUP]        | -            | Fine         | <25                                                                     | <50                                                       | 210                                    | 170                                    |
| otal Number of Samples   |              |              | 19                                                                      | 19                                                        | 19                                     | 19                                     |
| laximum Value            |              |              | <pql< td=""><td><pql< td=""><td>210</td><td>170</td></pql<></td></pql<> | <pql< td=""><td>210</td><td>170</td></pql<>               | 210                                    | 170                                    |
|                          |              |              | - •                                                                     |                                                           | -                                      | -                                      |
| oncentration above the S | AC           |              | VALUE                                                                   |                                                           |                                        |                                        |
| oncentration above the F | PQL          |              | Bold                                                                    |                                                           |                                        |                                        |

### MANAGEMENT LIMIT ASSESSMENT CRITERIA

| Sample Reference  | Sample Depth | Soil Texture | C <sub>6</sub> -C <sub>10</sub> (F1) plus<br>BTEX | >C <sub>10</sub> -C <sub>16</sub> (F2) plus<br>napthalene | >C <sub>16</sub> -C <sub>34</sub> (F3) | >C <sub>34</sub> -C <sub>40</sub> (F4) |
|-------------------|--------------|--------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------|----------------------------------------|
| TP201             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP201 - [LAB_DUP] | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP201             | 1.0-1.2      | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP202             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP203             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP203             | 0.4-0.6      | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP203             | 1.0-1.2      | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP204             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP205             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP205             | 1.0-1.2      | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP206             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP207             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP207             | 0.8-1.0      | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP208             | 0-0.1        | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| TP208             | 0.6-0.8      | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| SDUP1             | -            | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| SDUP1 - [LAB_DUP] | -            | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| SDUP2             | -            | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |
| SDUP2 - [LAB_DUP] | -            | Fine         | 800                                               | 1000                                                      | 3500                                   | 10000                                  |



TABLE 54 SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

| Analyte                  |              | C6-C10                                                                                                                                                                                                                          | >C10-C16                                                                                                                                                                                            | >C16-C34 | >C34-C40      | Benzene                                                                                                                                         | Toluene                                                                                                             | Ethylbenzene                                                                            | Xylenes                                                     | Naphthalene                     | PID |
|--------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-----|
| PQL - Envirolab Services |              | 25                                                                                                                                                                                                                              | 50                                                                                                                                                                                                  | 100      | 100           | 0.2                                                                                                                                             | 0.5                                                                                                                 | 1                                                                                       | 1                                                           | 1                               |     |
| CRC 2011 -Direct contac  | t Criteria   | 4,400                                                                                                                                                                                                                           | 3,300                                                                                                                                                                                               | 4,500    | 6,300         | 100                                                                                                                                             | 14,000                                                                                                              | 4,500                                                                                   | 12,000                                                      | 1,400                           |     |
| Site Use                 |              |                                                                                                                                                                                                                                 |                                                                                                                                                                                                     | RESIDE   | NTIAL WITH AC | CESSIBLE SOIL-                                                                                                                                  | DIRECT SOIL C                                                                                                       | ONTACT                                                                                  |                                                             |                                 |     |
| Sample Reference         | Sample Depth |                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |          |               |                                                                                                                                                 |                                                                                                                     |                                                                                         |                                                             |                                 |     |
| TP201                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 190      | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.9 |
| TP201 - [LAB_DUP]        | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 210      | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.9 |
| TP201                    | 1.0-1.2      | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.5 |
| TP202                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.5 |
| TP203                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.7 |
| TP203                    | 0.4-0.6      | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 1   |
| TP203                    | 1.0-1.2      | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.8 |
| TP204                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.8 |
| TP205                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 190      | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.3 |
| TP205                    | 1.0-1.2      | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.9 |
| TP206                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 110      | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.4 |
| TP207                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 0.6 |
| TP207                    | 0.8-1.0      | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 2.3 |
| TP208                    | 0-0.1        | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 1   |
| TP208                    | 0.6-0.8      | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | <100     | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | 3.4 |
| SDUP1                    | -            | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 100      | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              |     |
| SDUP1 - [LAB_DUP]        | -            | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 120      | <100          | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              |     |
| SDUP2                    | -            | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 200      | 150           | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              | NA  |
| SDUP2 - [LAB_DUP]        | -            | <25                                                                                                                                                                                                                             | <50                                                                                                                                                                                                 | 210      | 170           | <0.2                                                                                                                                            | <0.5                                                                                                                | <1                                                                                      | <1                                                          | <1                              |     |
| Total Number of Sample   | es           | 19                                                                                                                                                                                                                              | 19                                                                                                                                                                                                  | 19       | 19            | 19                                                                                                                                              | 19                                                                                                                  | 19                                                                                      | 19                                                          | 19                              | 15  |
| Maximum Value            |              | <pql< td=""><td><pql< td=""><td>210</td><td>170</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td>210</td><td>170</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | 210      | 170           | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td>3.4</td></pql<></td></pql<> | <pql< td=""><td>3.4</td></pql<> | 3.4 |

TABLE S5 ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

|             |                     |                 |                                   |                                  |                  |                 | FIE                            | LD DATA                                     |                      |          |                                                  |                |                               |                                            |                         |                       |       |                    | LABORATORY                                                                  | DATA                 |                             |                              |                                  |   |                                  |                            |
|-------------|---------------------|-----------------|-----------------------------------|----------------------------------|------------------|-----------------|--------------------------------|---------------------------------------------|----------------------|----------|--------------------------------------------------|----------------|-------------------------------|--------------------------------------------|-------------------------|-----------------------|-------|--------------------|-----------------------------------------------------------------------------|----------------------|-----------------------------|------------------------------|----------------------------------|---|----------------------------------|----------------------------|
| ate Sampled | Sample<br>reference | Sample<br>Depth | Visible<br>ACM in<br>top<br>100mm | Approx.<br>Volume of<br>Soil (L) | Soil<br>Mass (g) | Mass ACM (g)    | Mass<br>Asbestos in<br>ACM (g) | [Asbestos<br>from ACM<br>in soil]<br>(%w/w) | Mass ACM <7mm (g)    | ACM <7mm | [Asbestos<br>from ACM<br><7mm in<br>soil] (%w/w) | Mass FA (g)    | Mass<br>Asbestos in<br>FA (g) | [Asbestos<br>from FA in<br>soil]<br>(%w/w) | Lab<br>Report<br>Number | Sample<br>refeference | Denth | Sample<br>Mass (g) | Asbestos ID in soil (AS4964) >0.1g/kg                                       | Trace Analysis       | Total<br>Asbestos<br>(g/kg) | Asbestos ID in soil <0.1g/kg | ACM<br>>7mm<br>Estimation<br>(g) |   | ACM >7mm<br>Estimation<br>%(w/w) | FA and<br>Estimat<br>%(w/v |
| SAC         |                     |                 | No                                |                                  |                  |                 |                                | 0.01                                        |                      |          | 0.001                                            |                |                               | 0.001                                      |                         |                       |       |                    |                                                                             |                      |                             |                              |                                  |   | 0.01                             | 0.001                      |
| 17/11/2022  | TP201               | 0.0-0.1         | No                                | 10                               | 10,390           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP201                 | 0-0.1 | 704.19             | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | <0.00                      |
| 17/11/2022  | TP201               | 0.1-0.6         | NA                                | 10                               | 10,560           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         | -                     |       |                    | -                                                                           |                      |                             |                              |                                  |   |                                  |                            |
| 7/11/2022   | TP202               | 0.0-0.1         | No                                | 10                               | 10,250           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP202                 | 0-0.1 | 669.01             | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | <0.00                      |
| 17/11/2022  | TP202               | 0.1-0.6         | NA                                | 10                               | 10,720           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             | -                            |                                  |   |                                  |                            |
| 7/11/2022   | TP203               | 0.0-0.1         | No                                | 10                               | 10,910           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP203                 | 0-0.1 | 778.54             | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | <0.00                      |
| 7/11/2022   | TP203               | 0.1-0.7         | NA                                | 10                               | 11,200           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    | -                                                                           |                      |                             |                              |                                  |   |                                  |                            |
| 7/11/2022   | TP204               | 0.0-0.1         | No                                | 10                               | 11,490           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP204                 | 0-0.1 | 640.06             | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | <0.00                      |
| 7/11/2022   | TP204               | 0.1-0.5         | NA                                | 10                               | 10,720           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             | -                            |                                  |   |                                  |                            |
| 7/11/2022   | TP205               | 0.0-0.1         | No                                | 10                               | 12,560           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP205                 | 0-0.1 | 653.3              | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | <0.00                      |
| 17/11/2022  | TP205               | 0.1-0.6         | NA                                | 10                               | 10,290           | 20.2            | 3.027                          | 0.0294                                      | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             |                              |                                  |   |                                  |                            |
| 17/11/2022  | TP205               | 0.6-1.0         | NA                                | 10                               | 10,530           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             |                              |                                  |   |                                  |                            |
| 17/11/2022  | TP205               | 1.0-1.5         | NA                                | 10                               | 11,350           | 44.6            | 6.696                          | 0.0590                                      | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             |                              |                                  |   |                                  |                            |
| 17/11/2022  | TP206               | 0.0-0.1         | No                                | 10                               | 10,190           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP206                 | 0-0.1 | 545.92             | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | < 0.00                     |
| 17/11/2022  | TP206               | 0.1-0.7         | NA                                | 10                               | 10,850           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             |                              |                                  |   |                                  |                            |
| 17/11/2022  | TP207               | 0.0-0.2         | No                                | 10                               | 13,210           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP207                 | 0-0.1 | 809.06             | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | < 0.001                    |
| 17/11/2022  | TP207               | 0.2-0.5         | NA                                | 10                               | 10,070           |                 |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             |                              |                                  |   |                                  |                            |
| 17/11/2022  | TP208               | 0.0-0.2         | No                                | 10                               | 13,230           |                 |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            | 311057                  | TP208                 | 0-0.1 | 801.37             | No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected | No asbestos detected | <0.1                        | No visible asbestos detected | -                                | - | <0.01                            | <0.001                     |
| 7/11/2022   | TP208               | 0.2-0.4         | NA                                | 10                               | 10,440           | No ACM observed |                                |                                             | No ACM <7mm observed |          |                                                  | No FA observed |                               |                                            |                         |                       |       |                    |                                                                             |                      |                             |                              |                                  |   |                                  |                            |



#### TABLE S6 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs

All data in mg/kg unless stated otherwise

| and Use Category        |                 |                       |              |     |                   |                          |                                                                                                                                                                                                                                                                                                                                                                |          |           |               |        | URBAN RESID | ENTIAL AND PUB                                                                                                                                                                                                                                                              | LIC OPEN SPA                                                                                                                                                                                                                                    | CE                                                                                                                                                                                                                  |                                                                                                                                                                                         |                                        |                                        |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
|-------------------------|-----------------|-----------------------|--------------|-----|-------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------------|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
|                         |                 |                       |              |     |                   |                          |                                                                                                                                                                                                                                                                                                                                                                |          | AGED HEAV | Y METALS-EILs |        |             | EI                                                                                                                                                                                                                                                                          | Ls                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                        |                                        | ESLs                                                                                                                                |                                                                                                         |                                                                             |                                                 |                     |
|                         |                 |                       |              | рН  | CEC<br>(cmolc/kg) | Clay Content<br>(% clay) | Arsenic                                                                                                                                                                                                                                                                                                                                                        | Chromium | Copper    | Lead          | Nickel | Zinc        | Naphthalene                                                                                                                                                                                                                                                                 | DDT                                                                                                                                                                                                                                             | C <sub>6</sub> -C <sub>10</sub> (F1)                                                                                                                                                                                | >C <sub>10</sub> -C <sub>16</sub> (F2)                                                                                                                                                  | >C <sub>16</sub> -C <sub>34</sub> (F3) | >C <sub>34</sub> -C <sub>40</sub> (F4) | Benzene                                                                                                                             | Toluene                                                                                                 | Ethylbenzene                                                                | Total Xylenes                                   | B(a)P               |
| QL - Envirolab Services |                 |                       |              | -   | 1                 | -                        | 4                                                                                                                                                                                                                                                                                                                                                              | 1        | 1         | 1             | 1      | 1           | 1                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                  | 50                                                                                                                                                                                      | 100                                    | 100                                    | 0.2                                                                                                                                 | 0.5                                                                                                     | 1                                                                           | 1                                               | 0.05                |
| Ambient Background Con  | centration (AB  | C)                    |              | -   | -                 | -                        | NSL                                                                                                                                                                                                                                                                                                                                                            | 8        | 18        | 104           | 5      | 77          | NSL                                                                                                                                                                                                                                                                         | NSL                                                                                                                                                                                                                                             | NSL                                                                                                                                                                                                                 | NSL                                                                                                                                                                                     | NSL                                    | NSL                                    | NSL                                                                                                                                 | NSL                                                                                                     | NSL                                                                         | NSL                                             | NSL                 |
| Sample Reference        | Sample<br>Depth | Sample Description    | Soil Texture |     |                   |                          |                                                                                                                                                                                                                                                                                                                                                                |          |           |               |        |             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                        |                                        |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
| TP201                   | 0-0.1           | F: Silty Clay         | Fine         | 7.5 | 42                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 43       | 30        | 41            | 50     | 70          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 190                                    | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP201 - [LAB_DUP]       | 0-0.1           | F: Silty Clay         | Fine         | 7.5 | 42                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 45       | 34        | 50            | 58     | 81          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 210                                    | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP201                   | 1.0-1.2         | XW Granite            | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 42       | 22        | 14            | 18     | 55          | <1                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                              | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP202                   | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 47       | 43        | 38            | 23     | 92          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP203                   | 0-0.1           | F: Silty Sandy Gravel | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 29       | 17        | 51            | 28     | 53          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP203                   | 0.4-0.6         | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 35       | 59        | 24            | 16     | 77          | <1                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                              | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP203                   | 1.0-1.2         | Silty clay            | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 65       | 33        | 13            | 31     | 52          | <1                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                              | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | < 0.05              |
| TP204                   | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 38       | 19        | 23            | 17     | 86          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP205                   | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 42       | 19        | 23            | 20     | 55          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 190                                    | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP205                   | 1.0-1.2         | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 39       | 17        | 17            | 18     | 52          | <1                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                              | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP206                   | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 47       | 25        | 25            | 34     | 97          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 110                                    | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP207                   | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 38       | 17        | 10            | 17     | 37          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP207                   | 0.8-1.0         | Silty clay            | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 38       | 18        | 8             | 17     | 28          | <1                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                              | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP208                   | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 36       | 15        | 10            | 16     | 40          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| TP208                   | 0.6-0.8         | Silty clay            | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 51       | 24        | 10            | 23     | 39          | <1                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                              | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | <100                                   | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| SDUP1                   | -               | TP205 0-0.1           | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 43       | 19        | 16            | 20     | 54          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 100                                    | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| SDUP1 - [LAB_DUP]       | -               | TP205 0-0.1           | Fine         | NA  | NA                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 41       | 18        | 18            | 19     | 53          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 120                                    | <100                                   | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| SDUP2                   | -               | TP201 0-0.1           | Fine         | 7.5 | 42                | NA                       | <4                                                                                                                                                                                                                                                                                                                                                             | 53       | 37        | 60            | 59     | 86          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 200                                    | 150                                    | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | <0.05               |
| SDUP2 - [LAB_DUP]       | -               | TP201 0-0.1           | Fine         | 7.5 | 42                | NA                       | NA                                                                                                                                                                                                                                                                                                                                                             | NA       | NA        | NA            | NA     | NA          | <1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                                            | <25                                                                                                                                                                                                                 | <50                                                                                                                                                                                     | 210                                    | 170                                    | <0.2                                                                                                                                | <0.5                                                                                                    | <1                                                                          | <1                                              | NA                  |
| otal Number of Samples  | 5               |                       |              | 4   | 4                 | 0                        | 18                                                                                                                                                                                                                                                                                                                                                             | 18       | 18        | 18            | 18     | 18          | 19                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                  | 19                                                                                                                                                                                      | 19                                     | 19                                     | 19                                                                                                                                  | 19                                                                                                      | 19                                                                          | 19                                              | 18                  |
| Maximum Value           |                 |                       |              | 7.5 | 42                | NA                       | <pql< td=""><td>65</td><td>59</td><td>60</td><td>59</td><td>97</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>210</td><td>170</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | 65       | 59        | 60            | 59     | 97          | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>210</td><td>170</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td>210</td><td>170</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td>210</td><td>170</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td>210</td><td>170</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | 210                                    | 170                                    | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""></pql<></td></pql<> | <pql< td=""></pql<> |

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

### EIL AND ESL ASSESSMENT CRITERIA

| Sample Reference  | Sample<br>Depth | Sample Description    | Soil Texture | pН  | CEC<br>(cmolc/kg) | Clay Content<br>(% clay) | Arsenic | Chromium | Copper | Lead | Nickel | Zinc | Naphthalene | DDT | C <sub>6</sub> -C <sub>10</sub> (F1) | >C <sub>10</sub> -C <sub>16</sub> (F2) | >C <sub>16</sub> -C <sub>34</sub> (F3) | >C <sub>34</sub> -C <sub>40</sub> (F4) | Benzene | Toluene | Ethylbenzene | Total Xylenes | B(a)P |
|-------------------|-----------------|-----------------------|--------------|-----|-------------------|--------------------------|---------|----------|--------|------|--------|------|-------------|-----|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------|---------|--------------|---------------|-------|
| TP201             | 0-0.1           | F: Silty Clay         | Fine         | 7.5 | 42                | NA                       | 100     | 200      | 250    | 1200 | 560    | 1400 | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP201 - [LAB_DUP] | 0-0.1           | F: Silty Clay         | Fine         | 7.5 | 42                | NA                       | 100     | 200      | 250    | 1200 | 560    | 1400 | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP201             | 1.0-1.2         | XW Granite            | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         |     | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP202             | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP203             | 0-0.1           | F: Silty Sandy Gravel | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP203             | 0.4-0.6         | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         |     | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP203             | 1.0-1.2         | Silty clay            | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         |     | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP204             | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP205             | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP205             | 1.0-1.2         | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         |     | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP206             | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP207             | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP207             | 0.8-1.0         | Silty clay            | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         |     | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP208             | 0-0.1           | F: Silty Clay         | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| TP208             | 0.6-0.8         | Silty clay            | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         |     | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| SDUP1             | -               | TP205 0-0.1           | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| SDUP1 - [LAB_DUP] | -               | TP205 0-0.1           | Fine         | NA  | NA                | NA                       | 100     | 200      | 80     | 1200 | 35     | 150  | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| SDUP2             | -               | TP201 0-0.1           | Fine         | 7.5 | 42                | NA                       | 100     | 200      | 250    | 1200 | 560    | 1400 | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            | 20    |
| SDUP2 - [LAB_DUP] | -               | TP201 0-0.1           | Fine         | 7.5 | 42                | NA                       |         |          |        |      |        |      | 170         | 180 | 180                                  | 120                                    | 1300                                   | 5600                                   | 65      | 105     | 125          | 45            |       |



### SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

TABLE S7

|                          |                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | HEAVY    | METALS   |             |          |          | P/                                                                                                                                                                                                                                                                                                                                                                                                                                       | AHs                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                  | OC/OP                                                                                                                                                                                                                                                                                                                                                | PESTICIDES                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              | Total                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          | TRH                                                                                                                                                                          |                                  |                                  |                                                                                                                          | BTEX CON                                                                                     | <b>NPOUNDS</b>                                                   |                                      |               |
|--------------------------|-----------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|---------------|
|                          |                 |                             | Arconio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chromium | Connor   | Lood     | Margun      | Niekol   | Zinc     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                    | B(a)P                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                                                                                                                                                                                                                                                                                                                                                            | Chloropyrifos                                                                                                                                                                                                                                                                                                                                        | Total Moderately                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                                                                        | PCBs                                                                                                                                                                                                                                                             | C <sub>6</sub> -C <sub>9</sub>                                                                                                                                                                                                       | C <sub>10</sub> -C <sub>14</sub>                                                                                                                                                                         | C <sub>15</sub> -C <sub>28</sub>                                                                                                                                             | C <sub>29</sub> -C <sub>36</sub> | Total                            | Benzene                                                                                                                  | Toluene                                                                                      | Ethyl                                                            | Total                                | ASBESTOS FIBR |
|                          |                 |                             | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chromium | Copper   | Lead     | Mercury     | Nickel   | ZINC     | PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                              | Endosulfans                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      | Harmful                                                                                                                                                                                                                                                                                                                  | Scheduled                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                              |                                  | C <sub>10</sub> -C <sub>36</sub> |                                                                                                                          |                                                                                              | benzene                                                          | Xylenes                              |               |
| QL - Envirolab Services  | S               |                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | 1        | 1        | 0.1         | 1        | 1        | -                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                       | 100                                                                                                                                                                          | 100                              | 50                               | 0.2                                                                                                                      | 0.5                                                                                          | 1                                                                | 1                                    | 100           |
| eneral Solid Waste CT    | 1               |                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100      | NSL      | 100      | 4           | 40       | NSL      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                    | 250                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                               | 650                                                                                                                                                                                                                                  |                                                                                                                                                                                                          | NSL                                                                                                                                                                          |                                  | 10,000                           | 10                                                                                                                       | 288                                                                                          | 600                                                              | 1,000                                | -             |
| eneral Solid Waste SC    | C1              |                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1900     | NSL      | 1500     | 50          | 1050     | NSL      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                           | 108                                                                                                                                                                                                                                                                                                                                                                              | 7.5                                                                                                                                                                                                                                                                                                                                                  | 250                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                               | 650                                                                                                                                                                                                                                  |                                                                                                                                                                                                          | NSL                                                                                                                                                                          |                                  | 10,000                           | 18                                                                                                                       | 518                                                                                          | 1,080                                                            | 1,800                                | -             |
| estricted Solid Waste (  | CT2             |                             | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400      | NSL      | 400      | 16          | 160      | NSL      | 800                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2                                                                                                                                                                                                                                                                                                                                                                                                          | 240                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                   | 1000                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                               | 2600                                                                                                                                                                                                                                 |                                                                                                                                                                                                          | NSL                                                                                                                                                                          |                                  | 40,000                           | 40                                                                                                                       | 1,152                                                                                        | 2,400                                                            | 4,000                                | -             |
| estricted Solid Waste S  | SCC2            |                             | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600     | NSL      | 6000     | 200         | 4200     | NSL      | 800                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                           | 432                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                   | 1000                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                               | 2600                                                                                                                                                                                                                                 |                                                                                                                                                                                                          | NSL                                                                                                                                                                          |                                  | 40,000                           | 72                                                                                                                       | 2,073                                                                                        | 4,320                                                            | 7,200                                | -             |
| Sample Reference         | Sample<br>Depth | Sample Description          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |          |             |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                              |                                  |                                  |                                                                                                                          |                                                                                              |                                                                  |                                      |               |
| P201                     | 0-0.1           | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43       | 30       | 41       | 0.1         | 50       | 70       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | 150                              | 150                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | Not Detected  |
| P201 - [LAB_DUP]         | 0-0.1           | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45       | 34       | 50       | 0.1         | 58       | 81       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | 180                              | 180                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | NA            |
| P201                     | 1.0-1.2         | XW Granite                  | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42       | 22       | 14       | 0.4         | 18       | 55       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | NA            |
| P202                     | 0-0.1           | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47       | 43       | 38       | 0.3         | 23       | 92       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | Not Detected  |
| P203                     | 0-0.1           | F: Silty Sandy Gravel       | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29       | 17       | 51       | <0.1        | 28       | 53       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | Not Detected  |
| P203<br>P203             | 0.4-0.6         | F: Silty Clay               | <4<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35       | 59<br>33 | 24<br>13 | 0.3         | 16<br>31 | 77<br>52 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA<br>NA                                                                                                                                                                                                                                                         | <25                                                                                                                                                                                                                                  | <50<br><50                                                                                                                                                                                               | <100                                                                                                                                                                         | <100                             | <50                              | <0.2<br><0.2                                                                                                             | <0.5                                                                                         | <1<br><1                                                         | <1<br><1                             | NA<br>NA      |
| P203<br>P204             | 0-0.1           | Silty clay<br>F: Silty Clay | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38       | 19       | 23       | 0.1         | 17       | 86       | <0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                               | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25<br><25                                                                                                                                                                                                                           | <50                                                                                                                                                                                                      | <100<br><100                                                                                                                                                                 | <100<br><100                     | <50<br><50                       | <0.2                                                                                                                     | <0.5<br><0.5                                                                                 | <1                                                               | <1                                   | Not Detected  |
| P205                     | 0-0.1           | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42       | 19       | 23       | <0.1        | 20       | 55       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | 120                              | 120                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | Not Detected  |
| P205                     | 1.0-1.2         | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39       | 17       | 17       | 0.2         | 18       | 52       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | NA            |
| P206                     | 0-0.1           | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47       | 25       | 25       | 0.2         | 34       | 97       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | Not Detected  |
| P207                     | 0-0.1           | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38       | 17       | 10       | <0.1        | 17       | 37       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | Not Detected  |
| P207                     | 0.8-1.0         | Silty clay                  | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38       | 18       | 8        | <0.1        | 17       | 28       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | NA            |
| P208                     | 0-0.1           | F: Silty Clay               | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36       | 15       | 10       | <0.1        | 16       | 40       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | Not Detected  |
| P208                     | 0.6-0.8         | Silty clay                  | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51       | 24       | 10       | <0.1        | 23       | 39       | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | NA            |
| DUP1                     | -               | TP205 0-0.1                 | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43       | 19<br>18 | 16<br>18 | <0.1        | 20<br>19 | 54<br>53 | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                                                                                                                                                             | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | <100                             | <50<br><50                       | <0.2<br><0.2                                                                                                             | <0.5                                                                                         | <1                                                               | <1                                   | NA            |
| DUP1 - [LAB_DUP]<br>DUP2 | -               | TP205 0-0.1<br>TP201 0-0.1  | <4<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.4<br><0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41<br>53 | 37       | 60       | <0.1<br>0.1 | 59       | 86       | <0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1<br><0.1                                                                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                                                                                 | <0.1                                                                                                                                                                                                                                                                                                                     | <0.1                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                             | <25<br><25                                                                                                                                                                                                                           | <50<br><50                                                                                                                                                                                               | <100<br><100                                                                                                                                                                 | <100<br>210                      | 210                              | <0.2                                                                                                                     | <0.5<br><0.5                                                                                 | <1<br><1                                                         | <1<br><1                             | NA<br>NA      |
| DUP2 - [LAB DUP]         | -               | TP201 0-0.1                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA       | NA       | NA          | NA       | NA       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | <25                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                      | <100                                                                                                                                                                         | 240                              | 240                              | <0.2                                                                                                                     | <0.5                                                                                         | <1                                                               | <1                                   | NA            |
| CF1                      | Surface         | Fill                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA       | NA       | NA          | NA       | NA       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                       | NA                                                                                                                                                                           | NA                               | NA                               | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Not Detected  |
| CF2                      | Surface         | Fill                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA       | NA       | NA          | NA       | NA       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                       | NA                                                                                                                                                                           | NA                               | NA                               | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Detected      |
| P205-FCF1                | 0.1-0.6         | Fill                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA       | NA       | NA          | NA       | NA       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                       | NA                                                                                                                                                                           | NA                               | NA                               | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Detected      |
| P205-FCF2                | 1.0-1.5         | Fill                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA       | NA       | NA          | NA       | NA       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                       | NA                                                                                                                                                                           | NA                               | NA                               | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Not Detected  |
| P205-FCF3                | 1.0-1.5         | Fill                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA       | NA       | NA          | NA       | NA       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                       | NA                                                                                                                                                                           | NA                               | NA                               | NA                                                                                                                       | NA                                                                                           | NA                                                               | NA                                   | Detected      |
| Total Number of Sam      | ples            |                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18       | 18       | 18       | 18          | 18       | 18       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                   | 19                                                                                                                                                                                                       | 19                                                                                                                                                                           | 19                               | 19                               | 19                                                                                                                       | 19                                                                                           | 19                                                               | 19                                   | 13            |
|                          |                 |                             | <pql< td=""><td><pql< td=""><td>65</td><td>59</td><td>60</td><td>0.4</td><td>59</td><td>97</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td>65</td><td>59</td><td>60</td><td>0.4</td><td>59</td><td>97</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | 65       | 59       | 60       | 0.4         | 59       | 97       | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td>240</td><td>240</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<> | 240                              | 240                              | <pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<> | <pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<> | <pql< td=""><td>Detected</td></pql<> | Detected      |





### TABLE S8

### SOIL LABORATORY TCLP RESULTS

### All data in mg/L unless stated otherwise

|                     |                 |                    | Arsenic | Cadmium | Chromium | Lead | Mercury | Nickel                         | B(a)P |
|---------------------|-----------------|--------------------|---------|---------|----------|------|---------|--------------------------------|-------|
| PQL - Envirola      | b Services      |                    | 0.05    | 0.01    | 0.01     | 0.03 | 0.0005  | 0.02                           | 0.001 |
| TCLP1 - Gener       | al Solid Waste  |                    | 5       | 1       | 5        | 5    | 0.2     | 2                              | 0.04  |
| TCLP2 - Restrie     | cted Solid Was  | te                 | 20      | 4       | 20       | 20   | 0.8     | 8                              | 0.16  |
| TCLP3 - Hazaro      | dous Waste      |                    | >20     | >4      | >20      | >20  | >0.8    | >8                             | >0.16 |
| Sample<br>Reference | Sample<br>Depth | Sample Description |         |         |          |      |         |                                |       |
| TP201               | 0-0.1           | F: Silty Clay      | NA      | NA      | NA       | NA   | NA      | <0.02                          | NA    |
| Total Numb          | er of samples   |                    | 0       | 0       | 0        | 0    | 0       | 1                              | 0     |
| Maximum V           | alue            |                    | NA      | NA      | NA       | NA   | NA      | <pql< td=""><td>NA</td></pql<> | NA    |
| General Solid       | Waste           |                    | VALUE   |         |          |      |         |                                |       |
| Restricted Soli     | d Waste         |                    | VALUE   |         |          |      |         |                                |       |
| Hazardous Wa        | ste             |                    | VALUE   |         |          |      |         |                                |       |
| Concontration       | above PQL       |                    | Bold    |         |          |      |         |                                |       |

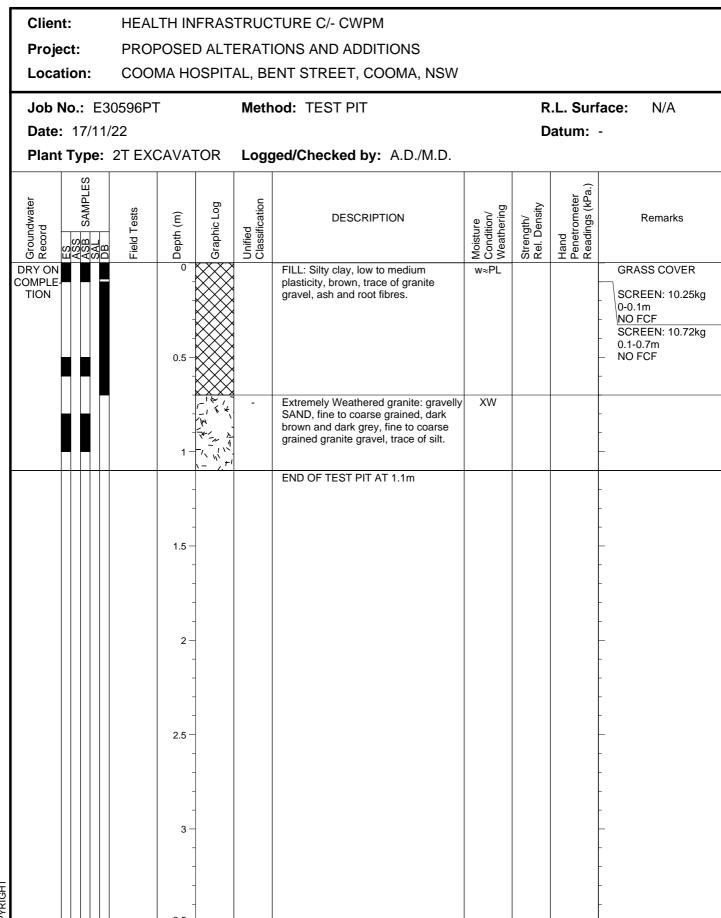
| Detailed (S | tage 2) Site Investigatio | n       |  |
|-------------|---------------------------|---------|--|
| Cooma Hos   | pital, Bent Street, Coon  | na, NSW |  |
| E30596PT    |                           |         |  |

| TABLE (<br>SOIL Q/ | )1<br>/QC SUMN   | IARY           |              |              |              |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     |          |        |         |           |                |
|--------------------|------------------|----------------|--------------|--------------|--------------|--------------|--------------------|--------------|------------|----------|-------------------------------|---------------|----------|--------------|------------|--------------|------------------------------|----------|--------------------------|----------------|-------------------------|-------------------------|----------------------|-------------------|------------|-----------|------------|------------|------------|--------------------|------------------|------------------|--------------|---------------------|--------|---------|---------------|------------|-----------------|---------------------|--------------|----------------------------------------------|---------------|----------------------|----------|------------|----------------------|--------------|-----------|------------|--------|------------|---------------------|----------|--------|---------|-----------|----------------|
|                    |                  |                | TRH C6 - C10 | TRH >C10-C16 | TRH >C16-C34 | TRH >C34-C40 | Benzene<br>Toluene | Ethylbenzene | m+p-xylene | o-Xylene | Naprunaiene<br>Acenaphthylene | Acenaph-thene | Fluorene | Phenanthrene | Anthracene | Fluoranthene | Pyrene<br>Renzo(a)anthracene | Chrysene | Benzo(b,j+k)fluoranthene | Benzo(a)pyrene | Indeno(1,2,3-c,d)pyrene | Dibenzo(a,h)anthra-cene | Benzo(g,h,i)perylene | HCB<br>ainha- BHC | gamma- BHC | beta- BHC | Heptachlor | delta- BHC | Aldrin     | Heptachlor Epoxide | Gamma- Chlordane | alpha- chlordane | Endosulfan I | pp- DDE<br>Dialdrin | Endrin | pp- DDD | Endosulfan II | pp- DDT    | Endrin Aldehyde | Endosulfan Sulphate | Methoxychlor | Azinphos-methyl (Guthion)<br>Bromophos-ethyl | Chlorpyriphos | Chlorpyriphos-methyl | Diazinon | Dichlorvos | Uimethoate<br>Ethion | Fenitrothion | Malathion | Parathion  | Ronnel | Total PCBS | Arsenic<br>Cadmiu m | Chromium | Copper | Lead    | Mercury   | Nickel<br>Zinc |
|                    |                  | nvirolab SYD   |              |              |              |              | 0.2 0.5            |              |            | 1 0.     |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    | 0.1 0            |                  |              |                     |        |         |               |            |                 |                     |              | 0.1 0.                                       |               |                      | 0.1      |            |                      |              |           |            |        |            |                     |          |        | 1       |           | 1 1            |
|                    | PQL E            | nvirolab VIC   | 25           | 50           | 100          | 100          | 0.2 0.5            | 1.0          | 2.0        | 1.0 0.   | .1 0.1                        | 1 0.1         | 0.1      | 0.1          | 0.1        | 0.1          | 0.1 0.                       | 1 0.1    | 0.2                      | 0.1            | 0.1                     | 0.1                     | 0.1                  | 0.1 0.            | 1 0.1      | 0.1       | 0.1        | 0.1        | 0.1        | 0.1                | 0.1 (            | 0.1 0            | 0.1 (        | 0.1 0.              | 1 0.1  | 1 0.1   | 0.1           | 0.1        | 0.1             | 0.1 0               | 0.1 0        | 0.1 0.                                       | 1 0.1         | 0.1                  | 0.1      | 0.1 0      | .1 0.1               | 0.1          | 0.1       | 0.1        | 0.1    | 0.1 4      | .0 0.4              | 1.0      | 1.0    | 1.0     | 0.1       | 1.0 1.0        |
|                    |                  |                |              |              |              |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     |          |        |         |           |                |
| Intra              | TP205            | 0-0.1          | <25          | <50          | 190          | <100         | <0.2 <0.5          | 5 <1         | <2         | <1 <0    | 0.1 <0.                       | .1 <0.1       | 1 <0.1   | <0.1         | <0.1       | <0.1 <       | <0.1 <0                      | 0.1 <0.1 | 1 <0.2                   | 2 <0.05        | < 0.1                   | <0.1                    | <0.1 <               | 0.1 <0            | .1 <0.     | 1 <0.1    | < 0.1      | <0.1       | <0.1       | <0.1               | <0.1 <           | :0.1 <           | < 0.1 <      | :0.1 <0             | .1 <0. | .1 <0.1 | < 0.1         | < 0.1      | <0.1 <          | <0.1 <              | 0.1 <0       | 0.1 <0                                       | .1 <0.1       | <0.1                 | <0.1     | <0.1 <0    | 0.1 <0.              | <0.1         | < 0.1     | <0.1       | <0.1   | <0.1       | <4 <0.4             | 4 42     | 19     | 23      | <0.1      | 20 55          |
| laborator          |                  | -              | <25          | <50          | 100          | <100         | <0.2 <0.5          | 5 <1         | <2         | <1 <0    | 0.1 <0.                       | .1 <0.1       | 1 <0.1   | <0.1         | <0.1       | <0.1 <       | <0.1 <0                      | 0.1 <0.1 | 1 <0.2                   | 2 <0.05        | < 0.1                   | < 0.1                   | <0.1 <               | 0.1 <0            | .1 <0.     | 1 <0.1    | < 0.1      | <0.1       | < 0.1      | <0.1               | <0.1 <           | :0.1 <           | < 0.1 <      | :0.1 <0             | .1 <0. | .1 <0.1 | < 0.1         | <0.1       | <0.1 <          | <0.1 <              | 0.1 <0       | 0.1 <0                                       | .1 <0.1       | <0.1                 | <0.1     | <0.1 <0    | 0.1 <0.              | < 0.1        | < 0.1     | <0.1       | <0.1   | <0.1       | <4 <0.4             | 4 43     | 19     | 16      | <0.1      | 20 54          |
| duplicate          | MEAN             |                | nc           |              | 145          | nc           | nc nc              | nc           | nc         | nc n     | nc no                         | c nc          | nc       | nc           | nc         | nc           | nc n                         | c nc     | nc                       | nc             | nc                      | nc                      | nc                   | nc n              | c nc       | nc        | nc         | nc         | nc         | nc                 | nc               | nc               | nc           | nc n                | c no   | c nc    | nc            | nc         | nc              | nc r                | nc r         | nc n                                         | c nc          | nc                   | nc       | nc r       | nc no                | nc           | nc        | nc         | nc     | nc         | nc nc               | 42.5     | 19     | 19.5    | nc        | 20 54.5        |
|                    | RPD %            |                | _            | nc           | 62%          | nc           | nc nc              | nc           | nc         | nc n     | nc no                         | c nc          | nc       | nc           | nc         | nc           | nc n                         | c nc     | nc                       | nc             | nc                      | nc                      | nc                   | nc n              | c nc       | nc        | nc         | nc         | nc         | nc                 | nc               | nc               | nc           | nc n                | c no   | c nc    | nc            | nc         | nc              | nc r                | nc r         | nc n                                         | c nc          | nc                   | nc       | nc r       | nc no                | nc           | nc        | nc         | nc     | nc         | nc nc               | 2%       | 0%     | _       | nc        |                |
| Inter              | 70201            | 0-0.1          |              | _            | -            | (100         | .0.2 .0.1          | c            | 0          |          | 1 .0                          | 1 .01         | 0.1      | -0.1         | -0.1       | -0.1         | 0.1 .0                       | 1 .01    | 0.2                      |                | -0.1                    | <0.1                    | -0.1                 | 0.1 -0            | 1 .0       | 1 .01     | -0.1       | -0.1       | -0.1       | -0.1               | -0.1             | 0.1              | .0.1 .       | 0.1 .0              | 1 -0   | 1 .01   | -0.1          | -0.1       |                 | <0.1 <              | 0.1 4        |                                              |               | -0.1                 | -0.1     | -0.1 -4    | 0.1 -0               | -0.1         |           |            | <0.1   | -0.1       | -                   | 4 42     | 20     |         |           |                |
| Inter<br>laborator | TP201<br>y SDUP2 | 0-0.1          | <25          | <50          | 200          | 150          | <0.2 <0.3          | 5 <1         | <2         | <1 <0    | ).1 <0.                       | 1 <0.1        | 1 <0.1   | <0.1         | <0.1       | <0.1 <       | 0.1 <0                       | 1 <0.1   | 1 <0.2                   |                | <0.1                    | <0.1                    | <0.1                 | 0.1 <0            | 1 <0.      | 1 <0.1    | <0.1       | <0.1       | <0.1       | <0.1               | <0.1 <           | 0.1 <            | 0.1 <        | 0.1 <0              | 1 <0.  | 1 <0.1  | <0.1          | <0.1       | <0.1            | <0.1 <              |              | 0.1 <0<br>0.1 <0                             | 1 <0.1        | <0.1                 | <0.1     | <0.1 <0    | 0.1 <0.              | <0.1         | <0.1      |            |        |            | <4 <0.4             | 43       | 27     | 41      | 0.1       | 50 70          |
| duplicate          |                  | -              | <2J          | nc           | 105          | 100          | 0.2 0.             | 5 11         | ×2         | 1 1      | .1 (0.                        | .1 \0.1       | 1 \0.1   | NU.1         | NU.1       | 0.1 0        | 0.1 0                        | C DC     | 1 \0.2                   | . 0.03         | <0.1                    | NU.1                    | 0.1                  | 0.1 00            | .1 \0.     | 1 (0.1    | <0.1       | <0.1<br>DC | <0.1<br>nc | <0.1<br>pc         | NU.1 N           | 0.1 1            | 0.1 1        | 0.1 00              | .1 \0. | .1 (0.1 |               | <0.1<br>pc | NO.1 N          | 0.1                 |              | 0.1 0                                        | .1 \0.1       | <0.1<br>pc           | NU.1 .   | 0.1 (0     | 0.1 <0.              |              | 0.1       | <0.1<br>pc | 0.1    | 0.1        | C4 C0.4             | / 33     | 22 5   | E0 E    | 0.1       | 54.5 78        |
| uupiicate          | PPD %            |                | nc           | nc           | 5%           | 100%         |                    | nc           | nc         | nc n     |                               |               | nc       | nc           | nc         | nc           |                              | c nc     | 00                       | nc             | nc                      | nc                      | nc                   | nc n              | c nc       | nc        | nc         | nc         | nc         | nc                 | nc               | nc i             | nc           |                     | c nc   |         | nc            | nc         | nc              | nc r                |              | nc n                                         |               | nc                   | nc       | nc r       |                      | nc           | nc        | nc         | nc     | nc         | nc nc               | 21%      | 21%    | 38%     |           | 17% 21%        |
|                    | 111 0 70         |                | ne           | ne           | 576          | 10070        | ne ne              | inc          | iic        | inc in   |                               |               | inc      | ne           | ne         | ne           | ne n                         |          | IIC                      | IIC            | nc                      | ne                      | ne                   | 110 11            |            | IIC       | ne         | ne         | ne         | ne                 | ne               | inc i            | ne           | iic ii              | C 11C  | i iic   | ne            | iic        | iic             | iic i               | 10           |                                              |               | inc                  | ne       | iic i      |                      | inc          | iic       | ne         | ne     | ne         |                     |          | 21/0   | _       |           |                |
| Field              | TB-S2            | -              | <25          | <50          | <100         | <100         | <0.2 <0.9          | 5 <1         | <2         | <1 <0    | 0.1 <0.                       | 1 <0.1        | 1 < 0.1  | <0.1         | <0.1       | <0.1 <       | :0.1 <0                      | .1 <0.1  | 1 <0.2                   | < 0.05         | <0.1                    | <0.1                    | <0.1                 | NA N              | A NA       | NA        | NA         | NA         | NA         | NA                 | NA               | NA N             | NA           | NA N                | A NA   | A NA    | NA            | NA         | NA              | NA N                |              | NA N                                         | A NA          | NA                   | NA       | NA N       | IA NA                | NA           | NA        | NA         | NA     | NA         | <4 <0.4             |          | <1     |         | <0.1      |                |
| Blank              | 18/11/2          | 2              |              |              |              |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     |          | 17     |         |           |                |
|                    |                  |                |              |              |              |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     | +        |        |         |           |                |
| Field              |                  | OVEL μg/L      | 130          | <50          | <100         | <100         | <1 <1              | <1           | <2         | <1 <     | 1 <1                          | 1 <1          | <1       | <1           | <1         | <1           | <1 <                         | 1 <1     | <2                       | <1             | <1                      | <1                      | <1                   | NA N              | A NA       | NA        | NA         | NA         | NA         | NA                 | NA I             | NA I             | NA I         | NA N                | A NA   | A NA    | NA            | NA         | NA              | NA M                | NA N         | NA N                                         | A NA          | NA                   | NA       | NA N       | NA NA                | NA           | NA        | NA         | NA     | NA <       | 0.05 <0.0           | 1 <0.01  | 1 0.8  | <0.03 · | <0.0005 < | -0.02 <0.02    |
| Rinsate            | 18/11/2          | 2              |              |              |              |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     |          |        |         |           |                |
|                    |                  |                |              |              |              |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     |          |        |         |           |                |
| Trip               | TS-S2            |                | -            | -            | -            | -            | 97% 96%            | 6 97%        | 98%        | 98%      |                               | -             | -        | -            | -          | -            |                              |          | -                        | -              | -                       | -                       | -                    |                   | -          | -         | -          | -          | -          | -                  | -                | -                | -            |                     |        | -       | -             | -          | -               | -                   | -            |                                              | -             | -                    | -        | -          |                      | -            | -         | -          | -      | -          |                     | -        | -      |         |           |                |
| Spike              | 18/11/2          | 2              |              |              |              |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     |          |        |         |           |                |
|                    | Result o         | utside of QA/C | QC accepta   | ance crit    | eria         |              |                    |              |            |          |                               |               |          |              |            |              |                              |          |                          |                |                         |                         |                      |                   |            |           |            |            |            |                    |                  |                  |              |                     |        |         |               |            |                 |                     |              |                                              |               |                      |          |            |                      |              |           |            |        |            |                     |          |        |         |           |                |





Appendix D: Test Pit Logs



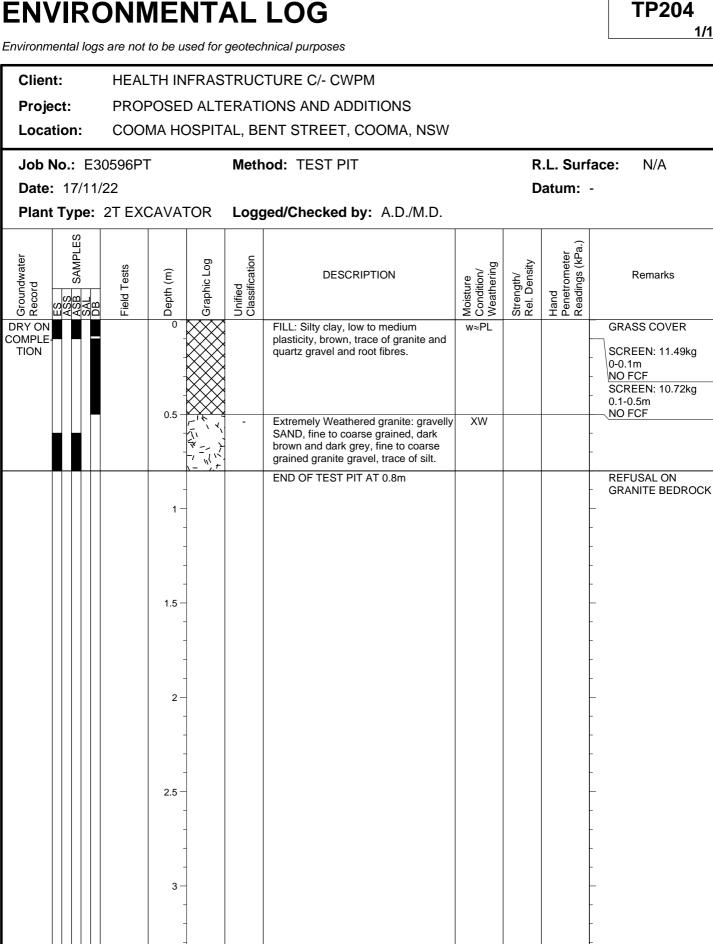

Environmental logs are not to be used for geotechnical purposes

Log No. TP201 1/1 SDUP2: 0-0.1m

|           | Clier                    | nt:   |                          | HEAL        | TH IN                                     | IFRAS       | TRUC                      | TURE C/- CWPM                                                                                                                                                |                                      |                           |                                         |                                                                                             |
|-----------|--------------------------|-------|--------------------------|-------------|-------------------------------------------|-------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|
|           | Proje                    |       |                          |             |                                           |             |                           | ONS AND ADDITIONS                                                                                                                                            |                                      |                           |                                         |                                                                                             |
|           | Loca                     | atio  | n:                       | COO         | MA HO                                     | DSPIT.      | AL, BE                    | ENT STREET, COOMA, NSW                                                                                                                                       |                                      |                           |                                         |                                                                                             |
|           |                          |       |                          | 0596PT      | Г                                         |             | Meth                      | od: TEST PIT                                                                                                                                                 |                                      | R                         | .L. Surf                                | ace: N/A                                                                                    |
|           | Date                     |       |                          |             |                                           |             | _                         |                                                                                                                                                              |                                      | D                         | atum:                                   | -                                                                                           |
|           | Plan                     | -     | -                        | 2T EX       |                                           | TOR         | Logo                      | ged/Checked by: A.D./M.D.                                                                                                                                    |                                      |                           |                                         |                                                                                             |
|           | Groundwater<br>Record    | C.    | ASB SAMPLES<br>SAL<br>DB | Field Tests | Depth (m)                                 | Graphic Log | Unified<br>Classification | DESCRIPTION                                                                                                                                                  | Moisture<br>Condition/<br>Weathering | Strength/<br>Rel. Density | Hand<br>Penetrometer<br>Readings (kPa.) | Remarks                                                                                     |
|           | DRY ON<br>COMPLE<br>TION | J<br> |                          |             | 0 -                                       |             |                           | FILL: Silty clay, medium plasticity,<br>trace of sand, granite and igneous<br>gravel, ceramic fragments and root<br>fibres.                                  | w≈PL                                 |                           |                                         | GRASS COVER<br>SCREEN: 10.39kg<br>0-0.1m<br>NO FCF<br>SCREEN: 10.56kg<br>0.1-0.6m<br>NO FCF |
|           |                          |       |                          |             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             | -                         | Extremely Weathered granite: gravelly<br>SAND, fine to coarse grained, dark<br>brown and dark grey, fine to coarse<br>grained granite gravel, trace of silt. | XW                                   |                           |                                         | -<br>-<br>-<br>-                                                                            |
| -         |                          |       |                          |             | 1.5 -                                     | -           |                           | END OF TEST PIT AT 1.3m                                                                                                                                      |                                      |                           |                                         | -                                                                                           |
|           |                          |       |                          |             | 2-                                        | -           |                           |                                                                                                                                                              |                                      |                           |                                         | -<br>-<br>-                                                                                 |
|           |                          |       |                          |             | 2.5 -                                     | -           |                           |                                                                                                                                                              |                                      |                           |                                         | -<br>-<br>-                                                                                 |
| COPYRIGHT |                          |       |                          |             | 3 -                                       | -           |                           |                                                                                                                                                              |                                      |                           |                                         | -                                                                                           |

Environmental logs are not to be used for geotechnical purposes




Log No. TP202 1/1

COPYRIGHT

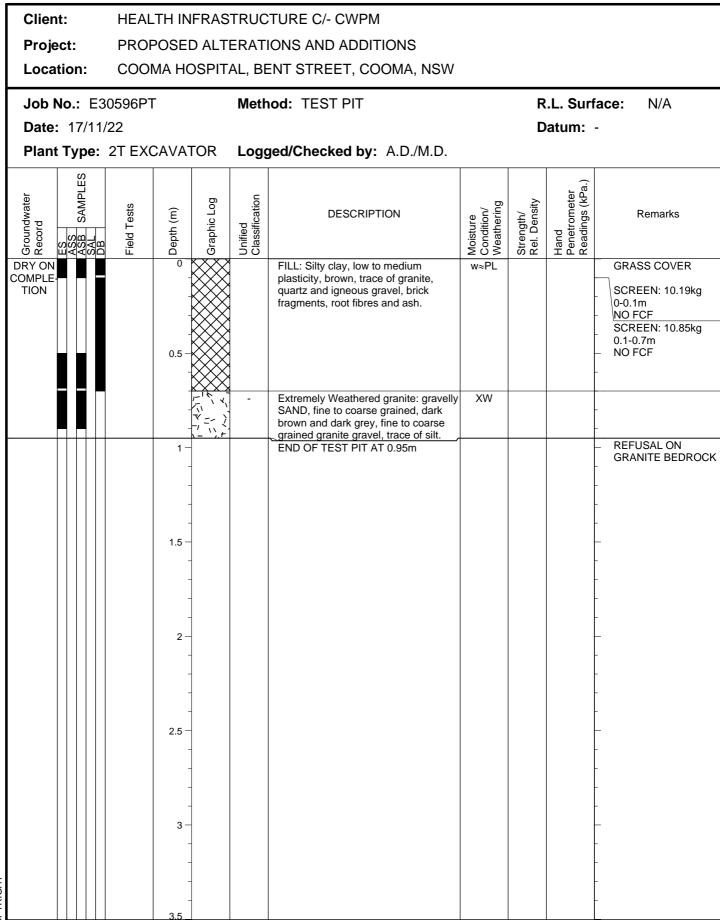
Environmental logs are not to be used for geotechnical purposes



| Client:                                             |                                         | TRUCTURE C/- CWPM                                                                                                                                                             |                                      |                           |                                         |                                             |
|-----------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|---------------------------------------------|
| Project:                                            |                                         | ERATIONS AND ADDITIONS                                                                                                                                                        |                                      |                           |                                         |                                             |
| Location:                                           | COOMA HOSPIT                            | AL, BENT STREET, COOMA, NSW                                                                                                                                                   |                                      |                           |                                         |                                             |
| Job No.: E3                                         | 0596PT                                  | Method: TEST PIT                                                                                                                                                              |                                      | R                         | .L. Surf                                | ace: N/A                                    |
| Date: 17/11/                                        | 22                                      |                                                                                                                                                                               |                                      | D                         | atum:                                   | -                                           |
| Plant Type:                                         | 2T EXCAVATOR                            | Logged/Checked by: A.D./M.D.                                                                                                                                                  |                                      |                           |                                         |                                             |
| Groundwater<br>Record<br>ES<br>ASB<br>SAMPLES<br>DB | Field Tests<br>Depth (m)<br>Graphic Log | Unified<br>DESCRIPTION<br>Classification                                                                                                                                      | Moisture<br>Condition/<br>Weathering | Strength/<br>Rel. Density | Hand<br>Penetrometer<br>Readings (kPa.) | Remarks                                     |
| ORY ON<br>OMPLE                                     | 0                                       | FILL: Silty sandy gravel, fine to coarse                                                                                                                                      | D                                    |                           |                                         | SCREEN: 10.91kg                             |
| TION                                                | 0.5-                                    | grained sand, trace of quartz gravel,<br>clay nodules and root fibres.<br>FILL: Silty clay, medium plasticity,<br>brown, trace of sand, ceramic<br>fragments and root fibres. | _ w≈PL                               |                           |                                         | <u>NO FCF</u> SCREEN: 11.20kg<br>NO FCF<br> |
|                                                     | 1-                                      | CI Silty CLAY: medium plasticity, orange<br>brown and yellow brown, trace of<br>granite gravel.                                                                               | w≈PL                                 |                           |                                         | RESIDUAL<br>-<br>-<br>-<br>-                |
|                                                     |                                         | END OF TEST PIT AT 1.3m                                                                                                                                                       |                                      |                           |                                         |                                             |



Log No.


1/1

Environmental logs are not to be used for geotechnical purposes



| Clier                 | nt:                                  | HEAL        | TH IN              | FRAS           | TRUC                      | TURE C/- CWPM                                                                                                                                  |                                      |                           |                                         |                                                              |
|-----------------------|--------------------------------------|-------------|--------------------|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|--------------------------------------------------------------|
| Proje                 | ect:                                 | PROF        | POSEI              | D ALTI         | ERAT                      | IONS AND ADDITIONS                                                                                                                             |                                      |                           |                                         |                                                              |
| -                     | ation:                               |             |                    |                |                           | ENT STREET, COOMA, NSW                                                                                                                         |                                      |                           |                                         |                                                              |
|                       |                                      |             |                    |                |                           |                                                                                                                                                |                                      |                           |                                         |                                                              |
|                       |                                      | 30596PT     |                    |                | Meth                      | od: TEST PIT                                                                                                                                   |                                      |                           | .L. Surf                                |                                                              |
|                       | : 17/11.                             |             | ~ ^ ` / ^ -        |                |                           |                                                                                                                                                |                                      | D                         | atum:                                   | -                                                            |
| Plan                  | 1                                    | ZIEX        |                    |                | Logę                      | ged/Checked by: A.D./M.D.                                                                                                                      |                                      |                           |                                         |                                                              |
| Groundwater<br>Record | ES<br>ASS<br>ASB<br>SAL<br>SAL<br>DB | Field Tests | Depth (m)          | Graphic Log    | Unified<br>Classification | DESCRIPTION                                                                                                                                    | Moisture<br>Condition/<br>Weathering | Strength/<br>Rel. Density | Hand<br>Penetrometer<br>Readings (kPa.) | Remarks                                                      |
| DRY ON                |                                      |             | 0                  | $\times$       | 0                         | FILL: Silty clay, low to medium                                                                                                                | <u>≥ 0 &gt;</u><br>w≈PL              | 0.15                      | <u> </u>                                | GRASS COVER                                                  |
| OMPLE<br>TION         |                                      |             | -                  |                |                           | plasticity, brown, trace of sand, quartz<br>and granite gravel, concrete, brick and<br>fibre cement fragments and root<br>fibres.              |                                      |                           |                                         | SCREEN: 12.56k<br>0-0.1m<br>- NO FCF                         |
|                       |                                      |             | - 0.5              |                |                           |                                                                                                                                                |                                      |                           |                                         | SCREEN: 10.29k<br>0.1-0.6m<br>– TP205-FCF1                   |
|                       |                                      |             | -                  |                |                           |                                                                                                                                                |                                      |                           |                                         | SCREEN: 10.53k<br>0.6-1.0m<br>NO FCF                         |
|                       |                                      |             | - 1<br>-<br>-<br>- |                |                           | FILL: Silty clay, medium plasticity, red<br>brown, trace of sand, brick and fibre<br>cement fragments, ash and root<br>fibres.                 | w≈PL                                 |                           |                                         | SCREEN: 11.35k<br>- 1.0-1.5m<br>- TP205-FCF2<br>- TP205-FCF3 |
|                       |                                      |             | -<br>1.5 –         | <u>کې</u>      | -                         | Extremely Weathered granite: gravelly                                                                                                          | XW                                   |                           |                                         | -                                                            |
|                       |                                      |             |                    | <del>- ~</del> |                           | SAND, fine to coarse grained, dark<br>brown and dark grey, fine to coarse<br>grained granite gravel, trace of silt.<br>END OF TEST PIT AT 1.6m |                                      |                           |                                         | REFUSAL ON<br>GRANITE BEDRO                                  |
|                       |                                      |             | 2                  |                |                           |                                                                                                                                                |                                      |                           | -                                       | -<br><br>-                                                   |
|                       |                                      |             | 2.5 -              |                |                           |                                                                                                                                                |                                      |                           |                                         | -                                                            |
|                       |                                      |             | -                  |                |                           |                                                                                                                                                |                                      |                           |                                         | -                                                            |
|                       |                                      |             | 3 -                |                |                           |                                                                                                                                                |                                      |                           |                                         | -                                                            |
|                       |                                      |             | -<br>3.5           |                |                           |                                                                                                                                                |                                      |                           |                                         | -                                                            |

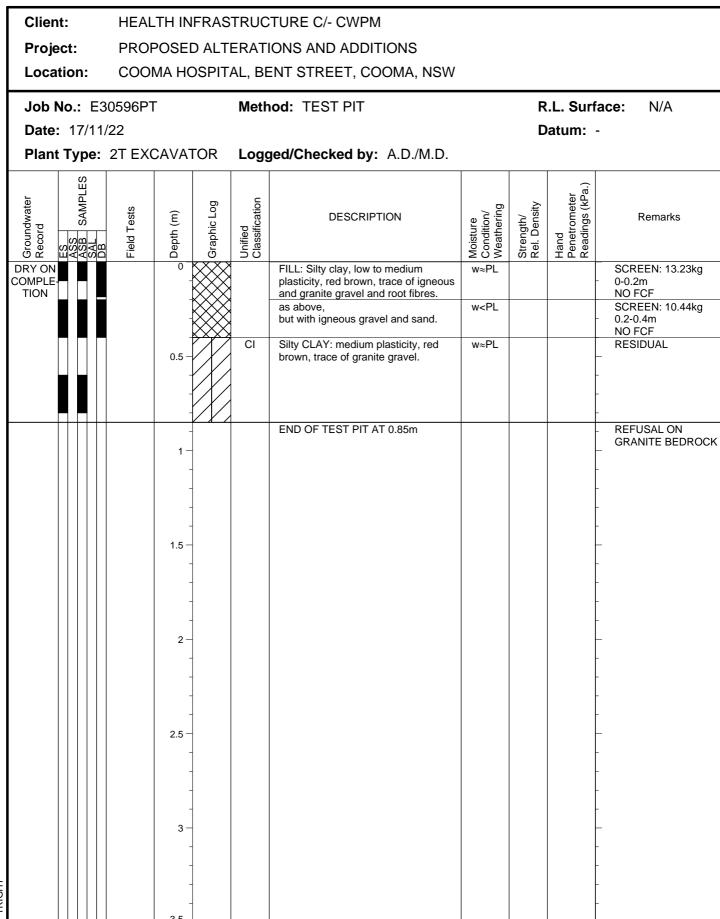
Environmental logs are not to be used for geotechnical purposes



Log No.

**TP206** 

1/1


COPYRIGHT

Environmental logs are not to be used for geotechnical purposes



| nvironm                 | vironmental logs are not to be used for geotechnical purposes |                                                                                                                 |               |             |                           |                                                                                                                                                                                                                   |                                      | SDUP4: 0-0.1m             |                                         |                                                                                  |
|-------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------------------------|
| Clier<br>Proje<br>Loca  |                                                               | HEALTH INFRASTRUCTURE C/- CWPM<br>PROPOSED ALTERATIONS AND ADDITIONS<br>COOMA HOSPITAL, BENT STREET, COOMA, NSW |               |             |                           |                                                                                                                                                                                                                   |                                      |                           |                                         |                                                                                  |
| Date                    | No.: E3<br>: 17/11/<br>t Type:                                | /22                                                                                                             |               | TOR         |                           | od: TEST PIT<br>ged/Checked by: A.D./M.D.                                                                                                                                                                         |                                      |                           | .L. Surf<br>atum:                       |                                                                                  |
| Groundwater<br>Record   | ES<br>ASS<br>AAL<br>DB<br>DB                                  | Field Tests                                                                                                     | Depth (m)     | Graphic Log | Unified<br>Classification | DESCRIPTION                                                                                                                                                                                                       | Moisture<br>Condition/<br>Weathering | Strength/<br>Rel. Density | Hand<br>Penetrometer<br>Readings (kPa.) | Remarks                                                                          |
| ORY ON<br>OMPLE<br>TION |                                                               |                                                                                                                 | 0             |             |                           | FILL: Silty clay, low to medium<br>plasticity, red brown, trace of igneous<br>and granite gravel, ceramic fragments<br>and root fibres.<br>as above,<br>but with igneous gravel, fine to coarse<br>grained, grey. | w≈PL<br>w≈PL                         |                           |                                         | SCREEN: 13.21kg<br>- 0-0.2m<br>NO FCF<br>SCREEN: 10.07kg<br>- 0.2-0.5m<br>NO FCF |
|                         |                                                               |                                                                                                                 | 0.5           |             | CI                        | Silty CLAY: medium plasticity, red<br>brown, trace of granite gravel and root<br>fibres.                                                                                                                          | w≈PL                                 |                           |                                         | RESIDUAL                                                                         |
|                         |                                                               |                                                                                                                 | - 1           |             |                           | END OF TEST PIT AT 1.0m                                                                                                                                                                                           |                                      |                           |                                         | -                                                                                |
|                         |                                                               |                                                                                                                 | 1.5<br>-<br>- |             |                           |                                                                                                                                                                                                                   |                                      |                           |                                         | -                                                                                |
|                         |                                                               |                                                                                                                 | -<br>2<br>-   |             |                           |                                                                                                                                                                                                                   |                                      |                           |                                         | -                                                                                |
|                         |                                                               |                                                                                                                 | 2.5           |             |                           |                                                                                                                                                                                                                   |                                      |                           |                                         | -<br>-<br>-                                                                      |
|                         |                                                               |                                                                                                                 | -<br>-<br>3   |             |                           |                                                                                                                                                                                                                   |                                      |                           |                                         | -<br>-<br>-                                                                      |
|                         |                                                               |                                                                                                                 | -<br>-<br>3.5 | -           |                           |                                                                                                                                                                                                                   |                                      |                           |                                         | -                                                                                |

Environmental logs are not to be used for geotechnical purposes







### **ENVIRONMENTAL LOGS EXPLANATION NOTES**

### INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

### DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

| Soil Classification | Particle Size    |
|---------------------|------------------|
| Clay                | < 0.002mm        |
| Silt                | 0.002 to 0.075mm |
| Sand                | 0.075 to 2.36mm  |
| Gravel              | 2.36 to 63mm     |
| Cobbles             | 63 to 200mm      |
| Boulders            | > 200mm          |

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

| Relative Density  | SPT 'N' Value<br>(blows/300mm) |
|-------------------|--------------------------------|
| Very loose (VL)   | < 4                            |
| Loose (L)         | 4 to 10                        |
| Medium dense (MD) | 10 to 30                       |
| Dense (D)         | 30 to 50                       |
| Very Dense (VD)   | > 50                           |

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

| Classification   | Unconfined<br>Compressive<br>Strength (kPa) | Indicative Undrained<br>Shear Strength (kPa) |
|------------------|---------------------------------------------|----------------------------------------------|
| Very Soft (VS)   | ≤25                                         | ≤12                                          |
| Soft (S)         | > 25 and $\leq$ 50                          | > 12 and $\leq$ 25                           |
| Firm (F)         | > 50 and $\leq$ 100                         | > 25 and $\leq$ 50                           |
| Stiff (St)       | $>$ 100 and $\leq$ 200                      | > 50 and $\leq$ 100                          |
| Very Stiff (VSt) | $>$ 200 and $\leq$ 400                      | $>$ 100 and $\leq$ 200                       |
| Hard (Hd)        | > 400                                       | > 200                                        |
| Friable (Fr)     | Strength not attainable                     | – soil crumbles                              |

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

### INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

**Test Pits:** These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the



structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

**Continuous Spiral Flight Augers:** The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

**Rock Augering:** Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

**Wash Boring:** The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

**Mud Stabilised Drilling:** Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

**Continuous Core Drilling:** A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

**Standard Penetration Tests:** Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N<sub>c</sub>' on the borehole logs, together with the number of blows per 150mm penetration.

### LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.



### GROUNDWATER

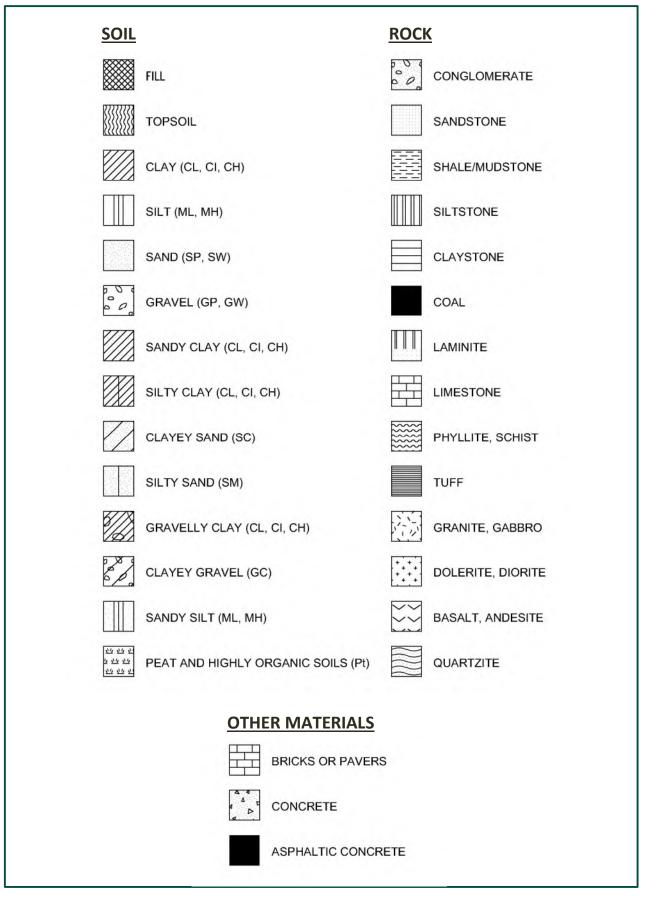
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

### FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

### LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.



### SYMBOL LEGENDS



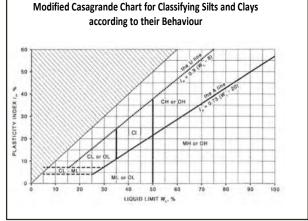


### **CLASSIFICATION OF COARSE AND FINE GRAINED SOILS**

| Ma                                | ajor Divisions                                                                                                                                | Group<br>Symbol | Typical Names                                                        | Field Classification of Sand and Gravel                                                                                                   | Laboratory Cl                    | assification                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|
| ianis                             | GRAVEL (more GW than half                                                                                                                     |                 | Gravel and gravel-sand mixtures, little or no fines                  | Wide range in grain size and substantial amounts of all intermediate sizes, not<br>enough fines to bind coarse grains, no dry strength    | ≤ 5% fines                       | C <sub>u</sub> >4<br>1 <c<sub>c&lt;3</c<sub> |
| rsizefract                        | of coarse<br>fraction is larger<br>than 2.36mm                                                                                                | GP              | Gravel and gravel-sand mixtures, little or no fines, uniform gravels | Predominantly one size or range of sizes with some intermediate sizes missing,<br>not enough fines to bind coarse grains, no dry strength | ≤ 5% fines                       | Fails to comply<br>with above                |
| luding ove                        |                                                                                                                                               | GM              | Gravel-silt mixtures and gravel-<br>sand-silt mixtures               | 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength                                                           | ≥ 12% fines, fines<br>are silty  | Fines behave as silt                         |
| 65% of sail exdu<br>than 0.075mm) |                                                                                                                                               | GC              | Gravel-clay mixtures and gravel-<br>sand-clay mixtures               | 'Dirty' materials with excess of plastic fines, medium to high dry strength                                                               | ≥ 12% fines, fines<br>are clayey | Fines behave as<br>clay                      |
| re than 65%<br>greater than       | SAND (more<br>than half                                                                                                                       | SW              | Sand and gravel-sand mixtures, little or no fines                    | Wide range in grain size and substantial amounts of all intermediate sizes, not<br>enough fines to bind coarse grains, no dry strength    | ≤ 5% fines                       | Cu>6<br>1 <cc<3< td=""></cc<3<>              |
| iai (mare<br>gn                   | of coarse<br>fraction<br>is smaller than                                                                                                      | SP              | Sand and gravel-sand mixtures, little or no fines                    | Predominantly one size or range of sizes with some intermediate sizes missing,<br>not enough fines to bind coarse grains, no dry strength | ≤ 5% fines                       | Fails to comply<br>with above                |
| egraineds                         | than half<br>of coarse<br>fraction is larger<br>than 2.36mm<br>SAND (more<br>than half<br>of coarse<br>fraction<br>is smaller than<br>2.36mm) | SM              | Sand-silt mixtures                                                   | 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength                                                           | ≥ 12% fines, fines<br>are silty  |                                              |
| Coarse                            | Coarse                                                                                                                                        |                 | Sand-clay mixtures                                                   | 'Dirty' materials with excess of plastic fines, medium to high dry strength                                                               | ≥ 12% fines, fines<br>are clayey | N/A                                          |

|                          |                                                                                                      | Group  |                                                                                                         |                   | Laboratory<br>Classification |               |              |
|--------------------------|------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|-------------------|------------------------------|---------------|--------------|
| Majo                     | Major Divisions                                                                                      |        | Typical Names                                                                                           | Dry Strength      | Dilatancy                    | Toughness     | % < 0.075mm  |
| SILT and CLAY            |                                                                                                      | ML     | Inorganic silt and very fine sand, rock flour, silty or<br>clayey fine sand or silt with low plasticity | None to low       | Slow to rapid                | Low           | Below A line |
| of sail exdu<br>0.075mm) | plasticity)                                                                                          | CL, CI | Inorganic clay of low to medium plasticity, gravelly<br>clay, sandy clay                                | Medium to high    | None to slow                 | Medium        | Above A line |
| an 35%<br>ssthan         |                                                                                                      | OL     | Organic silt                                                                                            | Low to medium     | Slow                         | Low           | Below A line |
| onisle                   | (low to medium<br>plasticity)<br>(Low to medium<br>plasticity)<br>SILT and CLAY<br>(high plasticity) |        | Inorganic silt                                                                                          | Low to medium     | None to slow                 | Low to medium | Below A line |
| soils (m<br>te fracti    |                                                                                                      |        | Inorganic clay of high plasticity                                                                       | High to very high | None                         | High          | Above A line |
| re grained:<br>oversiz   |                                                                                                      | ОН     | Organic clay of medium to high plasticity, organic silt                                                 | Medium to high    | None to very slow            | Low to medium | Below A line |
| .=                       | Highly organic soil                                                                                  | Pt     | Peat, highly organic soil                                                                               | -                 | -                            | -             | -            |

### Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature  $1 < C_c < 3$ . Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and  $C_C = \frac{(D_{30})^2}{D_{10}D_{60}}$ 

Where  $D_{10}$ ,  $D_{30}$  and  $D_{60}$  are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

### NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C<sub>c</sub>) and uniformity (C<sub>u</sub>) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.



### **JK**Environments



### LOG SYMBOLS

| Log Column                               | Symbol             | Definition                                                                                                                             |                                                             |                                                                                           |  |  |
|------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Groundwater Record                       | <b>—</b>           | Standing water level. Ti                                                                                                               | me delay following comple                                   | etion of drilling/excavation may be shown.                                                |  |  |
|                                          | — <b>c</b> —       | Extent of borehole/test                                                                                                                | pit collapse shortly after c                                | frilling/excavation.                                                                      |  |  |
|                                          | <b></b>            | Groundwater seepage i                                                                                                                  | nto borehole or test pit no                                 | oted during drilling or excavation.                                                       |  |  |
| Samples                                  | ES                 | Sample taken over dept                                                                                                                 | th indicated, for environm                                  | ental analysis.                                                                           |  |  |
|                                          | U50                |                                                                                                                                        | meter tube sample taken o                                   |                                                                                           |  |  |
|                                          | DB                 |                                                                                                                                        | aken over depth indicated                                   |                                                                                           |  |  |
|                                          | DS                 | -                                                                                                                                      | nple taken over depth indi                                  |                                                                                           |  |  |
|                                          | ASB                | •                                                                                                                                      | depth indicated, for asbest                                 |                                                                                           |  |  |
|                                          | ASS                |                                                                                                                                        | depth indicated, for acid su                                |                                                                                           |  |  |
|                                          | SAL                | Soil sample taken over o                                                                                                               | depth indicated, for salinit                                | y analysis.                                                                               |  |  |
|                                          | PFAS               | Soil sample taken over                                                                                                                 | depth indicated, for analys                                 | sis of Per- and Polyfluoroalkyl Substances.                                               |  |  |
| Field Tests                              | N = 17<br>4, 7, 10 |                                                                                                                                        | 150mm penetration. 'Refu                                    | tween depths indicated by lines. Individual sal' refers to apparent hammer refusal within |  |  |
|                                          | N <sub>c</sub> = 5 | Solid Cone Penetration                                                                                                                 | Test (SCPT) performed b                                     | etween depths indicated by lines. Individual                                              |  |  |
|                                          | 7                  |                                                                                                                                        |                                                             | $0^\circ$ solid cone driven by SPT hammer. 'R' refers                                     |  |  |
|                                          | 3R                 | to apparent hammer re                                                                                                                  | fusal within the correspor                                  | nding 150mm depth increment.                                                              |  |  |
|                                          | VNS = 25           | Vane shear reading in k                                                                                                                | Pa of undrained shear stre                                  | en <i>e</i> th                                                                            |  |  |
|                                          | PID = 100          | -                                                                                                                                      | or reading in ppm (soil sam                                 | -                                                                                         |  |  |
|                                          |                    |                                                                                                                                        |                                                             |                                                                                           |  |  |
| Moisture Condition                       | w > PL             | Moisture content estimated to be greater than plastic limit.<br>Moisture content estimated to be approximately equal to plastic limit. |                                                             |                                                                                           |  |  |
| (Fine Grained Soils)                     | w≈PL               |                                                                                                                                        |                                                             |                                                                                           |  |  |
|                                          | w < PL<br>w ≈ LL   |                                                                                                                                        | ated to be less than plastic<br>ated to be near liquid limi |                                                                                           |  |  |
|                                          | w ≈ LL<br>w > LL   |                                                                                                                                        | lated to be wet of liquid lin                               |                                                                                           |  |  |
| (Coorres Crained Soils)                  |                    |                                                                                                                                        |                                                             |                                                                                           |  |  |
| (Coarse Grained Soils)                   | D                  |                                                                                                                                        | hrough fingers.<br>n freely but no free water v             |                                                                                           |  |  |
|                                          | M                  |                                                                                                                                        | isible on soil surface.                                     | visible off soli surface.                                                                 |  |  |
|                                          | W                  |                                                                                                                                        |                                                             |                                                                                           |  |  |
| Strength (Consistency)<br>Cohesive Soils | VS                 |                                                                                                                                        | nfined compressive streng                                   |                                                                                           |  |  |
| Corresive Solis                          | S                  |                                                                                                                                        | nfined compressive streng                                   |                                                                                           |  |  |
|                                          | F                  |                                                                                                                                        | nfined compressive streng                                   |                                                                                           |  |  |
|                                          | St                 |                                                                                                                                        | 1 0                                                         | th > 100kPa and $\leq$ 200kPa.                                                            |  |  |
|                                          | VSt                |                                                                                                                                        | 1 0                                                         | th > 200kPa and $\leq$ 400kPa.                                                            |  |  |
|                                          | Hd                 |                                                                                                                                        | nfined compressive streng                                   |                                                                                           |  |  |
|                                          | Fr                 |                                                                                                                                        | gth not attainable, soil cru                                |                                                                                           |  |  |
|                                          | ()                 | Bracketed symbol indi<br>assessment.                                                                                                   | cates estimated consister                                   | ncy based on tactile examination or other                                                 |  |  |
| Density Index/<br>Relative Density       |                    |                                                                                                                                        | Density Index (I <sub>D</sub> )<br>Range (%)                | SPT 'N' Value Range<br>(Blows/300mm)                                                      |  |  |
| (Cohesionless Soils)                     | VL                 | VERY LOOSE                                                                                                                             | ≤15                                                         | 0-4                                                                                       |  |  |
|                                          | L                  | LOOSE                                                                                                                                  | $>$ 15 and $\leq$ 35                                        | 4-10                                                                                      |  |  |
|                                          | MD                 | MEDIUM DENSE                                                                                                                           | $>$ 35 and $\leq$ 65                                        | 10-30                                                                                     |  |  |
|                                          | 1 5                | DENCE                                                                                                                                  |                                                             | 30 – 50                                                                                   |  |  |
|                                          | D                  | DENSE                                                                                                                                  | > 65 and ≤ 85                                               | 50 - 50                                                                                   |  |  |
|                                          | VD                 | VERY DENSE                                                                                                                             | > 65 and ≤ 85<br>> 85                                       | > 50                                                                                      |  |  |



| Log Column                    | Symbol      | Definition                         |                                                                                                                                                                                                                                                                           |
|-------------------------------|-------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hand Penetrometer<br>Readings | 300<br>250  |                                    | g in kPa of unconfined compressive strength. Numbers indicate individual presentative undisturbed material unless noted otherwise.                                                                                                                                        |
| Remarks                       | 'V' bit     | Hardened steel '\                  | /' shaped bit.                                                                                                                                                                                                                                                            |
|                               | 'TC' bit    | Twin pronged tur                   | ngsten carbide bit.                                                                                                                                                                                                                                                       |
|                               | $T_{60}$    | Penetration of au without rotation | iger string in mm under static load of rig applied by drill head hydraulics of augers.                                                                                                                                                                                    |
|                               | Soil Origin | The geological or                  | igin of the soil can generally be described as:                                                                                                                                                                                                                           |
|                               |             | RESIDUAL                           | <ul> <li>soil formed directly from insitu weathering of the underlying rock.</li> <li>No visible structure or fabric of the parent rock.</li> </ul>                                                                                                                       |
|                               |             | EXTREMELY<br>WEATHERED             | <ul> <li>soil formed directly from insitu weathering of the underlying rock.</li> <li>Material is of soil strength but retains the structure and/or fabric of the parent rock.</li> </ul>                                                                                 |
|                               |             | ALLUVIAL                           | <ul> <li>soil deposited by creeks and rivers.</li> </ul>                                                                                                                                                                                                                  |
|                               |             | ESTUARINE                          | <ul> <li>soil deposited in coastal estuaries, including sediments caused by<br/>inflowing creeks and rivers, and tidal currents.</li> </ul>                                                                                                                               |
|                               |             | MARINE                             | <ul> <li>soil deposited in a marine environment.</li> </ul>                                                                                                                                                                                                               |
|                               |             | AEOLIAN                            | <ul> <li>soil carried and deposited by wind.</li> </ul>                                                                                                                                                                                                                   |
|                               |             | COLLUVIAL                          | <ul> <li>soil and rock debris transported downslope by gravity, with or without<br/>the assistance of flowing water. Colluvium is usually a thick deposit<br/>formed from a landslide. The description 'slopewash' is used for thinner<br/>surficial deposits.</li> </ul> |
|                               |             | LITTORAL                           | <ul> <li>beach deposited soil.</li> </ul>                                                                                                                                                                                                                                 |



### **Classification of Material Weathering**

| Term                 | Abbreviation            |    | Definition                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------|-------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residual Soil        | R                       | S  | Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported. |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Extremely Weathered  |                         | xw |                                                                                                                                                                                                                  | Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.                                                                                                                                                                                                                                             |
| Highly Weathered     | Distinctly<br>Weathered | HW |                                                                                                                                                                                                                  | The whole of the rock material is discoloured, usually by iron staining or<br>bleaching to the extent that the colour of the original rock is not recognisable.<br>Rock strength is significantly changed by weathering. Some primary minerals<br>have weathered to clay minerals. Porosity may be increased by leaching, or<br>may be decreased due to deposition of weathering products in pores. |
| Moderately Weathered | (Note 1) (Note 1)       |    |                                                                                                                                                                                                                  | The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.                                                                                                                                                                             |
| Slightly Weathered   | SW                      |    | Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fresh                | F                       | R  | Rock shows no sign of decomposition of individual minerals or colour changes.                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |

**NOTE 1:** The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

### **Rock Material Strength Classification**

|                            |              |                                           | Guide to Strength                                        |                                                                                                                                                                                                                                                                                       |  |  |  |
|----------------------------|--------------|-------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Term                       | Abbreviation | Uniaxial<br>Compressive<br>Strength (MPa) | Point Load<br>Strength Index<br>Is <sub>(50)</sub> (MPa) | Field Assessment                                                                                                                                                                                                                                                                      |  |  |  |
| Very Low<br>Strength       | VL           | 0.6 to 2                                  | 0.03 to 0.1                                              | Material crumbles under firm blows with sharp end of pick;<br>can be peeled with knife; too hard to cut a triaxial sample by<br>hand. Pieces up to 30mm thick can be broken by finger<br>pressure.                                                                                    |  |  |  |
| Low Strength               | L            | 2 to 6                                    | 0.1 to 0.3                                               | Easily scored with a knife; indentations 1mm to 3mm show<br>in the specimen with firm blows of the pick point; has dull<br>sound under hammer. A piece of core 150mm long by 50mm<br>diameter may be broken by hand. Sharp edges of core may<br>be friable and break during handling. |  |  |  |
| Medium<br>Strength         | М            | 6 to 20                                   | 0.3 to 1                                                 | Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.                                                                                                                                                                               |  |  |  |
| High Strength              | н            | 20 to 60                                  | 1 to 3                                                   | A piece of core 150mm long by 50mm diameter cannot be<br>broken by hand but can be broken by a pick with a single<br>firm blow; rock rings under hammer.                                                                                                                              |  |  |  |
| Very High<br>Strength      | VH           | 60 to 200                                 | 3 to 10                                                  | Hand specimen breaks with pick after more than one blow; rock rings under hammer.                                                                                                                                                                                                     |  |  |  |
| Extremely<br>High Strength | EH           | > 200                                     | > 10                                                     | Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.                                                                                                                                                                          |  |  |  |



### **Appendix E: Laboratory Report(s) & COC Documents**





### **CERTIFICATE OF ANALYSIS 311057**

| Client Details |                                      |
|----------------|--------------------------------------|
| Client         | JK Environments                      |
| Attention      | Katrina Taylor                       |
| Address        | PO Box 976, North Ryde BC, NSW, 1670 |

| Sample Details                       |                              |
|--------------------------------------|------------------------------|
| Your Reference                       | E30596PT, Cooma              |
| Number of Samples                    | 29 Soil, 1 Water, 6 Material |
| Date samples received                | 18/11/2022                   |
| Date completed instructions received | 18/11/2022                   |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

### **Report Details**

Date of Issue

Date results requested by

25/11/2022 25/11/2022

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with \*

### Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean, Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

### **Results Approved By**

Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Kyle Gavrily, Senior Chemist Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Soil                                                                                                                                                                                                                   |                                                                       |                                                                                                                                             |                                                                                                                                        |                                                                                                                      |                                                                                                                  |                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Our Reference                                                                                                                                                                                                                                |                                                                       | 311057-1                                                                                                                                    | 311057-4                                                                                                                               | 311057-7                                                                                                             | 311057-10                                                                                                        | 311057-12                                                                                                                                |
| Your Reference                                                                                                                                                                                                                               | UNITS                                                                 | TP201                                                                                                                                       | TP202                                                                                                                                  | TP203                                                                                                                | TP204                                                                                                            | TP205                                                                                                                                    |
| Depth                                                                                                                                                                                                                                        |                                                                       | 0-0.1                                                                                                                                       | 0-0.1                                                                                                                                  | 0-0.1                                                                                                                | 0-0.1                                                                                                            | 0-0.1                                                                                                                                    |
| Date Sampled                                                                                                                                                                                                                                 |                                                                       | 17/11/2022                                                                                                                                  | 17/11/2022                                                                                                                             | 17/11/2022                                                                                                           | 17/11/2022                                                                                                       | 17/11/2022                                                                                                                               |
| Type of sample                                                                                                                                                                                                                               |                                                                       | Soil                                                                                                                                        | Soil                                                                                                                                   | Soil                                                                                                                 | Soil                                                                                                             | Soil                                                                                                                                     |
| Date extracted                                                                                                                                                                                                                               | -                                                                     | 21/11/2022                                                                                                                                  | 21/11/2022                                                                                                                             | 21/11/2022                                                                                                           | 21/11/2022                                                                                                       | 21/11/2022                                                                                                                               |
| Date analysed                                                                                                                                                                                                                                | -                                                                     | 23/11/2022                                                                                                                                  | 23/11/2022                                                                                                                             | 23/11/2022                                                                                                           | 23/11/2022                                                                                                       | 23/11/2022                                                                                                                               |
| TRH C6 - C9                                                                                                                                                                                                                                  | mg/kg                                                                 | <25                                                                                                                                         | <25                                                                                                                                    | <25                                                                                                                  | <25                                                                                                              | <25                                                                                                                                      |
| TRH C <sub>6</sub> - C <sub>10</sub>                                                                                                                                                                                                         | mg/kg                                                                 | <25                                                                                                                                         | <25                                                                                                                                    | <25                                                                                                                  | <25                                                                                                              | <25                                                                                                                                      |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1)                                                                                                                                                                                         | mg/kg                                                                 | <25                                                                                                                                         | <25                                                                                                                                    | <25                                                                                                                  | <25                                                                                                              | <25                                                                                                                                      |
| Benzene                                                                                                                                                                                                                                      | mg/kg                                                                 | <0.2                                                                                                                                        | <0.2                                                                                                                                   | <0.2                                                                                                                 | <0.2                                                                                                             | <0.2                                                                                                                                     |
| Toluene                                                                                                                                                                                                                                      | mg/kg                                                                 | <0.5                                                                                                                                        | <0.5                                                                                                                                   | <0.5                                                                                                                 | <0.5                                                                                                             | <0.5                                                                                                                                     |
| Ethylbenzene                                                                                                                                                                                                                                 | mg/kg                                                                 | <1                                                                                                                                          | <1                                                                                                                                     | <1                                                                                                                   | <1                                                                                                               | <1                                                                                                                                       |
| m+p-xylene                                                                                                                                                                                                                                   | mg/kg                                                                 | <2                                                                                                                                          | <2                                                                                                                                     | <2                                                                                                                   | <2                                                                                                               | <2                                                                                                                                       |
| o-Xylene                                                                                                                                                                                                                                     | mg/kg                                                                 | <1                                                                                                                                          | <1                                                                                                                                     | <1                                                                                                                   | <1                                                                                                               | <1                                                                                                                                       |
| Naphthalene                                                                                                                                                                                                                                  | mg/kg                                                                 | <1                                                                                                                                          | <1                                                                                                                                     | <1                                                                                                                   | <1                                                                                                               | <1                                                                                                                                       |
| Total +ve Xylenes                                                                                                                                                                                                                            | mg/kg                                                                 | <1                                                                                                                                          | <1                                                                                                                                     | <1                                                                                                                   | <1                                                                                                               | <1                                                                                                                                       |
| Surrogate aaa-Trifluorotoluene                                                                                                                                                                                                               | %                                                                     | 81                                                                                                                                          | 82                                                                                                                                     | 85                                                                                                                   | 81                                                                                                               | 90                                                                                                                                       |
| 1                                                                                                                                                                                                                                            |                                                                       | 1                                                                                                                                           |                                                                                                                                        |                                                                                                                      |                                                                                                                  |                                                                                                                                          |
| vTRH(C6-C10)/BTEXN in Soil                                                                                                                                                                                                                   | 1                                                                     |                                                                                                                                             | 1                                                                                                                                      |                                                                                                                      |                                                                                                                  |                                                                                                                                          |
| vTRH(C6-C10)/BTEXN in Soil<br>Our Reference                                                                                                                                                                                                  |                                                                       | 311057-16                                                                                                                                   | 311057-19                                                                                                                              | 311057-22                                                                                                            | 311057-25                                                                                                        | 311057-28                                                                                                                                |
|                                                                                                                                                                                                                                              | UNITS                                                                 | 311057-16<br>TP206                                                                                                                          | 311057-19<br>TP207                                                                                                                     | 311057-22<br>TP208                                                                                                   | 311057-25<br>SDUP1                                                                                               | 311057-28<br>TB-S2                                                                                                                       |
| Our Reference                                                                                                                                                                                                                                | UNITS                                                                 |                                                                                                                                             |                                                                                                                                        |                                                                                                                      |                                                                                                                  |                                                                                                                                          |
| Our Reference<br>Your Reference                                                                                                                                                                                                              | UNITS                                                                 | TP206                                                                                                                                       | TP207                                                                                                                                  | TP208                                                                                                                |                                                                                                                  |                                                                                                                                          |
| Our Reference<br>Your Reference<br>Depth                                                                                                                                                                                                     | UNITS                                                                 | TP206<br>0-0.1                                                                                                                              | TP207<br>0-0.1                                                                                                                         | TP208<br>0-0.1                                                                                                       | SDUP1<br>-                                                                                                       | TB-S2<br>-                                                                                                                               |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled                                                                                                                                                                                     | UNITS<br>-                                                            | TP206<br>0-0.1<br>17/11/2022                                                                                                                | TP207<br>0-0.1<br>17/11/2022                                                                                                           | TP208<br>0-0.1<br>17/11/2022                                                                                         | SDUP1<br>-<br>17/11/2022                                                                                         | TB-S2<br>-<br>17/11/2022                                                                                                                 |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample                                                                                                                                                                   | UNITS<br>-<br>-                                                       | TP206<br>0-0.1<br>17/11/2022<br>Soil                                                                                                        | TP207<br>0-0.1<br>17/11/2022<br>Soil                                                                                                   | TP208<br>0-0.1<br>17/11/2022<br>Soil                                                                                 | SDUP1<br>-<br>17/11/2022<br>Soil                                                                                 | TB-S2<br>-<br>17/11/2022<br>Soil                                                                                                         |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted                                                                                                                                                 | UNITS<br>-<br>-<br>mg/kg                                              | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022                                                                                          | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022                                                                                     | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022                                                                   | SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022                                                                   | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022                                                                                           |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed                                                                                                                                | -                                                                     | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022                                                                            | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022                                                                       | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022                                                     | SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022                                                     | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022                                                                             |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C <sub>6</sub> - C <sub>9</sub>                                                                                         | -<br>-<br>mg/kg                                                       | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25                                                                     | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25                                                                | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25                                              | SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25                                              | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25                                                                      |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH $C_6 - C_9$<br>TRH $C_6 - C_{10}$                                                                                       | -<br>-<br>mg/kg<br>mg/kg                                              | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25                                                              | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25                                                         | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25                                       | SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25                                       | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25                                                               |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH $C_6 - C_9$<br>TRH $C_6 - C_{10}$<br>vTPH $C_6 - C_{10}$ less BTEX (F1)                                                 | -<br>-<br>mg/kg<br>mg/kg<br>mg/kg                                     | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25                                                       | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25                                                  | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25                                | SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25                                | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25                                                        |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH $C_6 - C_9$<br>TRH $C_6 - C_{10}$<br>vTPH $C_6 - C_{10}$ less BTEX (F1)<br>Benzene                                      | -<br>-<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2                                        | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2                                   | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2                 | SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2                 | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><25<br><0.2                                  |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C $_6$ - C $_9$<br>TRH C $_6$ - C $_{10}$<br>vTPH C $_6$ - C $_{10}$ less BTEX (F1)<br>Benzene<br>Toluene               | -<br>-<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2                                | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2                           | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2         | SDUP1         -         17/11/2022         Soil         21/11/2022         23/11/2022         <25                | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2                                 |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH $C_6 - C_9$<br>TRH $C_6 - C_10$<br>vTPH $C_6 - C_{10}$ less BTEX (F1)<br>Benzene<br>Toluene<br>Ethylbenzene             | -<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg               | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5<br><1                         | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5                   | TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5 | SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5 | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5                         |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C6 - C9<br>TRH C6 - C10<br>vTPH C6 - C10 less BTEX (F1)<br>Benzene<br>Toluene<br>Ethylbenzene<br>m+p-xylene             | -<br>-<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5<br><1<br><2            | TP207         0-0.1         17/11/2022         Soil         21/11/2022         23/11/2022         <25                                  | TP208         0-0.1         17/11/2022         Soil         21/11/2022         23/11/2022         <25                | SDUP1         -         17/11/2022         Soil         21/11/2022         23/11/2022         <25                | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.5<br><1<br><1<br><2               |
| Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C6 - C9<br>TRH C6 - C10<br>vTPH C6 - C10 less BTEX (F1)<br>Benzene<br>Toluene<br>Ethylbenzene<br>m+p-xylene<br>o-Xylene | -<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg      | TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5<br><1<br><2<br><1<br><2<br><1 | TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5<br><1<br><2<br><1 | TP208         0-0.1         17/11/2022         Soil         21/11/2022         23/11/2022         <25                | SDUP1         -         17/11/2022         Soil         21/11/2022         23/11/2022         <25                | TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>23/11/2022<br><25<br><25<br><25<br><25<br><0.2<br><0.2<br><0.5<br><1<br><1<br><2<br><1 |

| vTRH(C6-C10)/BTEXN in Soil     |       |            |
|--------------------------------|-------|------------|
| Our Reference                  |       | 311057-29  |
| Your Reference                 | UNITS | TS-S2      |
| Depth                          |       | -          |
| Date Sampled                   |       | 17/11/2022 |
| Type of sample                 |       | Soil       |
| Date extracted                 | -     | 21/11/2022 |
| Date analysed                  | -     | 23/11/2022 |
| Benzene                        | mg/kg | 97%        |
| Toluene                        | mg/kg | 96%        |
| Ethylbenzene                   | mg/kg | 97%        |
| m+p-xylene                     | mg/kg | 98%        |
| o-Xylene                       | mg/kg | 98%        |
| Naphthalene                    | mg/kg | [NT]       |
| Total +ve Xylenes              | mg/kg | [NT]       |
| Surrogate aaa-Trifluorotoluene | %     | 97         |

| svTRH (C10-C40) in Soil                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                  |                                                                                                                                  |                                                                                                                                  |                                                                                                                                      |                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Our Reference                                                                                                                                                                                                                                                                                  |                                                         | 311057-1                                                                                                                         | 311057-4                                                                                                                         | 311057-7                                                                                                                         | 311057-10                                                                                                                            | 311057-12                                                                                                                            |
| Your Reference                                                                                                                                                                                                                                                                                 | UNITS                                                   | TP201                                                                                                                            | TP202                                                                                                                            | TP203                                                                                                                            | TP204                                                                                                                                | TP205                                                                                                                                |
| Depth                                                                                                                                                                                                                                                                                          |                                                         | 0-0.1                                                                                                                            | 0-0.1                                                                                                                            | 0-0.1                                                                                                                            | 0-0.1                                                                                                                                | 0-0.1                                                                                                                                |
| Date Sampled                                                                                                                                                                                                                                                                                   |                                                         | 17/11/2022                                                                                                                       | 17/11/2022                                                                                                                       | 17/11/2022                                                                                                                       | 17/11/2022                                                                                                                           | 17/11/2022                                                                                                                           |
| Type of sample                                                                                                                                                                                                                                                                                 |                                                         | Soil                                                                                                                             | Soil                                                                                                                             | Soil                                                                                                                             | Soil                                                                                                                                 | Soil                                                                                                                                 |
| Date extracted                                                                                                                                                                                                                                                                                 | -                                                       | 21/11/2022                                                                                                                       | 21/11/2022                                                                                                                       | 21/11/2022                                                                                                                       | 21/11/2022                                                                                                                           | 21/11/2022                                                                                                                           |
| Date analysed                                                                                                                                                                                                                                                                                  | -                                                       | 22/11/2022                                                                                                                       | 22/11/2022                                                                                                                       | 22/11/2022                                                                                                                       | 22/11/2022                                                                                                                           | 22/11/2022                                                                                                                           |
| TRH C <sub>10</sub> - C <sub>14</sub>                                                                                                                                                                                                                                                          | mg/kg                                                   | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                                  | <50                                                                                                                                  |
| TRH C <sub>15</sub> - C <sub>28</sub>                                                                                                                                                                                                                                                          | mg/kg                                                   | <100                                                                                                                             | <100                                                                                                                             | <100                                                                                                                             | <100                                                                                                                                 | <100                                                                                                                                 |
| TRH C <sub>29</sub> - C <sub>36</sub>                                                                                                                                                                                                                                                          | mg/kg                                                   | 150                                                                                                                              | <100                                                                                                                             | <100                                                                                                                             | <100                                                                                                                                 | 120                                                                                                                                  |
| Total +ve TRH (C10-C36)                                                                                                                                                                                                                                                                        | mg/kg                                                   | 150                                                                                                                              | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                                  | 120                                                                                                                                  |
| TRH >C10 -C16                                                                                                                                                                                                                                                                                  | mg/kg                                                   | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                                  | <50                                                                                                                                  |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2)                                                                                                                                                                                                                                   | mg/kg                                                   | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                                  | <50                                                                                                                                  |
| TRH >C <sub>16</sub> -C <sub>34</sub>                                                                                                                                                                                                                                                          | mg/kg                                                   | 190                                                                                                                              | <100                                                                                                                             | <100                                                                                                                             | <100                                                                                                                                 | 190                                                                                                                                  |
| TRH >C <sub>34</sub> -C <sub>40</sub>                                                                                                                                                                                                                                                          | mg/kg                                                   | <100                                                                                                                             | <100                                                                                                                             | <100                                                                                                                             | <100                                                                                                                                 | <100                                                                                                                                 |
| Total +ve TRH (>C10-C40)                                                                                                                                                                                                                                                                       | mg/kg                                                   | 190                                                                                                                              | <50                                                                                                                              | <50                                                                                                                              | <50                                                                                                                                  | 190                                                                                                                                  |
| Surrogate o-Terphenyl                                                                                                                                                                                                                                                                          | %                                                       | 77                                                                                                                               | 76                                                                                                                               | 77                                                                                                                               | 80                                                                                                                                   | 79                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                  |                                                                                                                                  |                                                                                                                                  |                                                                                                                                      |                                                                                                                                      |
| svTRH (C10-C40) in Soil                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                  |                                                                                                                                  |                                                                                                                                  |                                                                                                                                      |                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                |                                                         | 311057-16                                                                                                                        | 311057-19                                                                                                                        | 311057-22                                                                                                                        | 311057-25                                                                                                                            | 311057-28                                                                                                                            |
| svTRH (C10-C40) in Soil                                                                                                                                                                                                                                                                        | UNITS                                                   |                                                                                                                                  |                                                                                                                                  |                                                                                                                                  |                                                                                                                                      |                                                                                                                                      |
| svTRH (C10-C40) in Soil<br>Our Reference                                                                                                                                                                                                                                                       | UNITS                                                   | 311057-16                                                                                                                        | 311057-19                                                                                                                        | 311057-22                                                                                                                        | 311057-25                                                                                                                            | 311057-28                                                                                                                            |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference                                                                                                                                                                                                                                     | UNITS                                                   | 311057-16<br>TP206                                                                                                               | 311057-19<br>TP207                                                                                                               | 311057-22<br>TP208                                                                                                               | 311057-25                                                                                                                            | 311057-28                                                                                                                            |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth                                                                                                                                                                                                                            | UNITS                                                   | 311057-16<br>TP206<br>0-0.1                                                                                                      | 311057-19<br>TP207<br>0-0.1                                                                                                      | 311057-22<br>TP208<br>0-0.1                                                                                                      | 311057-25<br>SDUP1<br>-                                                                                                              | 311057-28<br>TB-S2<br>-                                                                                                              |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled                                                                                                                                                                                                            | UNITS                                                   | 311057-16<br>TP206<br>0-0.1<br>17/11/2022                                                                                        | 311057-19<br>TP207<br>0-0.1<br>17/11/2022                                                                                        | 311057-22<br>TP208<br>0-0.1<br>17/11/2022                                                                                        | 311057-25<br>SDUP1<br>-<br>17/11/2022                                                                                                | 311057-28<br>TB-S2<br>-<br>17/11/2022                                                                                                |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample                                                                                                                                                                                          | UNITS<br>-<br>-                                         | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil                                                                                | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil                                                                                | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil                                                                                | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil                                                                                        | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil                                                                                        |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted                                                                                                                                                                        | UNITS<br>-<br>-<br>mg/kg                                | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022                                                                  | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022                                                                  | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022                                                                  | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022                                                                          | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022                                                                          |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed                                                                                                                                                       | -                                                       | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022                                                    | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022                                                    | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022                                                    | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022                                                            | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022                                                            |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C <sub>10</sub> - C <sub>14</sub>                                                                                                              | -<br>-<br>mg/kg                                         | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50                                             | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50                                             | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50                                             | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50                                                     | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50                                                     |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C <sub>10</sub> - C <sub>14</sub><br>TRH C <sub>15</sub> - C <sub>28</sub>                                                                     | -<br>-<br>mg/kg<br>mg/kg                                | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100                                     | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100                                     | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100                                     | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100                                             | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100                                             |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C <sub>10</sub> - C <sub>14</sub><br>TRH C <sub>15</sub> - C <sub>28</sub><br>TRH C <sub>29</sub> - C <sub>36</sub>                            | -<br>-<br>mg/kg<br>mg/kg<br>mg/kg                       | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100                             | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100                             | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100                             | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100                                     | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100                                     |
| svTRH (C10-C40) in Soil<br>Our Reference<br>Your Reference<br>Depth<br>Date Sampled<br>Type of sample<br>Date extracted<br>Date analysed<br>TRH C <sub>10</sub> - C <sub>14</sub><br>TRH C <sub>15</sub> - C <sub>28</sub><br>TRH C <sub>29</sub> - C <sub>36</sub><br>Total +ve TRH (C10-C36) | -<br>-<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg              | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50                      | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50                      | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50                      | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50                              | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50                              |
| svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 -C16                                                                             | -<br>-<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg     | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50               | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50<br><50        | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50<br><50        | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50<br><50                | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50<br><50                |
| svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 - C16TRH >C10 - C16 less Naphthalene (F2)                                        | -<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 311057-16<br>TP206<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50<br><50<br><50 | 311057-19<br>TP207<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50<br><50<br><50 | 311057-22<br>TP208<br>0-0.1<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><50<br><50<br><50<br><50 | 311057-25<br>SDUP1<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><100<br><50<br><50<br><50<br><50 | 311057-28<br>TB-S2<br>-<br>17/11/2022<br>Soil<br>21/11/2022<br>22/11/2022<br><50<br><100<br><100<br><100<br><50<br><50<br><50<br><50 |

%

73

Surrogate o-Terphenyl

76

79

70

72

| PAHs in Soil                   |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                  |       | 311057-1   | 311057-4   | 311057-7   | 311057-10  | 311057-12  |
| Your Reference                 | UNITS | TP201      | TP202      | TP203      | TP204      | TP205      |
| Depth                          |       | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      |
| Date Sampled                   |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed                  | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| Naphthalene                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Phenanthrene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Anthracene                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluoranthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Pyrene                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(a)anthracene             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chrysene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Benzo(a)pyrene                 | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Total +ve PAH's                | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 78         | 78         | 79         | 79         | 77         |

| PAHs in Soil                   |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                  |       | 311057-16  | 311057-19  | 311057-22  | 311057-25  | 311057-28  |
| Your Reference                 | UNITS | TP206      | TP207      | TP208      | SDUP1      | TB-S2      |
| Depth                          |       | 0-0.1      | 0-0.1      | 0-0.1      | -          | -          |
| Date Sampled                   |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed                  | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| Naphthalene                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Phenanthrene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Anthracene                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluoranthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Pyrene                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(a)anthracene             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chrysene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Benzo(a)pyrene                 | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Total +ve PAH's                | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 77         | 78         | 75         | 76         | 79         |

| Organochlorine Pesticides in soil |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                     |       | 311057-1   | 311057-4   | 311057-7   | 311057-10  | 311057-12  |
| Your Reference                    | UNITS | TP201      | TP202      | TP203      | TP204      | TP205      |
| Depth                             |       | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      |
| Date Sampled                      |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed                     | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Total +ve DDT+DDD+DDE             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                    | %     | 80         | 83         | 82         | 80         | 79         |

| Organochlorine Pesticides in soil |       |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|
| Our Reference                     |       | 311057-16  | 311057-19  | 311057-22  | 311057-25  |
| Your Reference                    | UNITS | TP206      | TP207      | TP208      | SDUP1      |
| Depth                             |       | 0-0.1      | 0-0.1      | 0-0.1      | -          |
| Date Sampled                      |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed                     | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Total +ve DDT+DDD+DDE             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                    | %     | 80         | 79         | 78         | 80         |

| Organophosphorus Pesticides in Soil |       |            |            |            |            |            |
|-------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                       |       | 311057-1   | 311057-4   | 311057-7   | 311057-10  | 311057-12  |
| Your Reference                      | UNITS | TP201      | TP202      | TP203      | TP204      | TP205      |
| Depth                               |       | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      |
| Date Sampled                        |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                      |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                      | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed                       | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| Dichlorvos                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dimethoate                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Diazinon                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ronnel                              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fenitrothion                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Malathion                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Parathion                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ethion                              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Azinphos-methyl (Guthion)           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                      | %     | 80         | 83         | 82         | 80         | 79         |

| Organophosphorus Pesticides in Soil |       |            |            |            |            |
|-------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                       |       | 311057-16  | 311057-19  | 311057-22  | 311057-25  |
| Your Reference                      | UNITS | TP206      | TP207      | TP208      | SDUP1      |
| Depth                               |       | 0-0.1      | 0-0.1      | 0-0.1      | -          |
| Date Sampled                        |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                      |       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                      | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed                       | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| Dichlorvos                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Dimethoate                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Diazinon                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Ronnel                              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Fenitrothion                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Malathion                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Parathion                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Ethion                              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Azinphos-methyl (Guthion)           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                      | %     | 80         | 79         | 78         | 80         |

| PCBs in Soil               |       |            |            |            |            |            |
|----------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference              |       | 311057-1   | 311057-4   | 311057-7   | 311057-10  | 311057-12  |
| Your Reference             | UNITS | TP201      | TP202      | TP203      | TP204      | TP205      |
| Depth                      |       | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      |
| Date Sampled               |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted             | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed              | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| Aroclor 1016               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1221               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1232               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1242               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1248               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1254               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1260               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Total +ve PCBs (1016-1260) | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX             | %     | 80         | 83         | 82         | 80         | 79         |

| PCBs in Soil               |       |            |            |            |            |
|----------------------------|-------|------------|------------|------------|------------|
| Our Reference              |       | 311057-16  | 311057-19  | 311057-22  | 311057-25  |
| Your Reference             | UNITS | TP206      | TP207      | TP208      | SDUP1      |
| Depth                      |       | 0-0.1      | 0-0.1      | 0-0.1      | -          |
| Date Sampled               |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample             |       | Soil       | Soil       | Soil       | Soil       |
| Date extracted             | -     | 21/11/2022 | 21/11/2022 | 21/11/2022 | 21/11/2022 |
| Date analysed              | -     | 24/11/2022 | 24/11/2022 | 24/11/2022 | 24/11/2022 |
| Aroclor 1016               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1221               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1232               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1242               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1248               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1254               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1260               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Total +ve PCBs (1016-1260) | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX             | %     | 80         | 79         | 78         | 80         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                   |       | 311057-1   | 311057-4   | 311057-7   | 311057-10  | 311057-12  |
| Your Reference                  | UNITS | TP201      | TP202      | TP203      | TP204      | TP205      |
| Depth                           |       | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      | 0-0.1      |
| Date Sampled                    |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                   | -     | 22/11/2022 | 22/11/2022 | 22/11/2022 | 22/11/2022 | 22/11/2022 |
| Date analysed                   | -     | 23/11/2022 | 23/11/2022 | 23/11/2022 | 23/11/2022 | 23/11/2022 |
| Arsenic                         | mg/kg | <4         | <4         | <4         | <4         | <4         |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4       | <0.4       | <0.4       |
| Chromium                        | mg/kg | 43         | 47         | 29         | 38         | 42         |
| Copper                          | mg/kg | 30         | 43         | 17         | 19         | 19         |
| Lead                            | mg/kg | 41         | 38         | 51         | 23         | 23         |
| Mercury                         | mg/kg | 0.1        | 0.3        | <0.1       | 0.1        | <0.1       |
| Nickel                          | mg/kg | 50         | 23         | 28         | 17         | 20         |
| Zinc                            | mg/kg | 70         | 92         | 53         | 86         | 55         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                   |       | 311057-16  | 311057-19  | 311057-22  | 311057-25  | 311057-28  |
| Your Reference                  | UNITS | TP206      | TP207      | TP208      | SDUP1      | TB-S2      |
| Depth                           |       | 0-0.1      | 0-0.1      | 0-0.1      | -          | -          |
| Date Sampled                    |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                   | -     | 22/11/2022 | 22/11/2022 | 22/11/2022 | 22/11/2022 | 22/11/2022 |
| Date analysed                   | -     | 23/11/2022 | 23/11/2022 | 23/11/2022 | 23/11/2022 | 23/11/2022 |
| Arsenic                         | mg/kg | <4         | <4         | <4         | <4         | <4         |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4       | <0.4       | <0.4       |
| Chromium                        | mg/kg | 47         | 38         | 36         | 43         | 3          |
| Copper                          | mg/kg | 25         | 17         | 15         | 19         | <1         |
| Lead                            | mg/kg | 25         | 10         | 10         | 16         | 2          |
| Mercury                         | mg/kg | 0.2        | <0.1       | <0.1       | <0.1       | <0.1       |
| Nickel                          | mg/kg | 34         | 17         | 16         | 20         | <1         |
| Zinc                            | mg/kg | 97         | 37         | 40         | 54         | 2          |

| Moisture                       |       |                    |                    |                    |                    |                    |
|--------------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference                  |       | 311057-1           | 311057-4           | 311057-7           | 311057-10          | 311057-12          |
| Your Reference                 | UNITS | TP201              | TP202              | TP203              | TP204              | TP205              |
| Depth                          |       | 0-0.1              | 0-0.1              | 0-0.1              | 0-0.1              | 0-0.1              |
| Date Sampled                   |       | 17/11/2022         | 17/11/2022         | 17/11/2022         | 17/11/2022         | 17/11/2022         |
| Type of sample                 |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date prepared                  | -     | 21/11/2022         | 21/11/2022         | 21/11/2022         | 21/11/2022         | 21/11/2022         |
| Date analysed                  | -     | 22/11/2022         | 22/11/2022         | 22/11/2022         | 22/11/2022         | 22/11/2022         |
| Moisture                       | %     | 8.4                | 10                 | 5.4                | 10                 | 9.5                |
| Moisture                       |       |                    |                    |                    |                    |                    |
| Our Reference                  |       | 311057-16          | 311057-19          | 311057-22          | 311057-25          | 311057-28          |
| Your Reference                 | UNITS | TP206              | TP207              | TP208              | SDUP1              | TB-S2              |
| Depth                          |       | 0-0.1              | 0-0.1              | 0-0.1              | -                  | -                  |
|                                |       |                    |                    |                    |                    |                    |
| Date Sampled                   |       | 17/11/2022         | 17/11/2022         | 17/11/2022         | 17/11/2022         | 17/11/2022         |
| Date Sampled<br>Type of sample |       | 17/11/2022<br>Soil | 17/11/2022<br>Soil | 17/11/2022<br>Soil | 17/11/2022<br>Soil | 17/11/2022<br>Soil |
|                                | -     |                    |                    |                    |                    |                    |
| Type of sample                 | -     | Soil               | Soil               | Soil               | Soil               | Soil               |

| Asbestos ID - soils NEPM - ASB-001    |        |                                                             |                                                             |                                                             |                                                             |                                                             |
|---------------------------------------|--------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Our Reference                         |        | 311057-1                                                    | 311057-4                                                    | 311057-7                                                    | 311057-10                                                   | 311057-12                                                   |
| Your Reference                        | UNITS  | TP201                                                       | TP202                                                       | TP203                                                       | TP204                                                       | TP205                                                       |
| Depth                                 |        | 0-0.1                                                       | 0-0.1                                                       | 0-0.1                                                       | 0-0.1                                                       | 0-0.1                                                       |
| Date Sampled                          |        | 17/11/2022                                                  | 17/11/2022                                                  | 17/11/2022                                                  | 17/11/2022                                                  | 17/11/2022                                                  |
| Type of sample                        |        | Soil                                                        | Soil                                                        | Soil                                                        | Soil                                                        | Soil                                                        |
| Date analysed                         | -      | 24/11/2022                                                  | 24/11/2022                                                  | 24/11/2022                                                  | 24/11/2022                                                  | 24/11/2022                                                  |
| Sample mass tested                    | g      | 704.19                                                      | 669.01                                                      | 778.54                                                      | 640.06                                                      | 653.3                                                       |
| Sample Description                    | -      | Brown coarse-<br>grained soil &<br>rocks                    |
| Asbestos ID in soil (AS4964) >0.1g/kg | -      | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg |
|                                       |        | Organic fibres<br>detected                                  |
| Trace Analysis                        | -      | No asbestos detected                                        | No asbestos detected                                        | No asbestos<br>detected                                     | No asbestos<br>detected                                     | No asbestos<br>detected                                     |
| Total Asbestos <sup>#1</sup>          | g/kg   | <0.1                                                        | <0.1                                                        | <0.1                                                        | <0.1                                                        | <0.1                                                        |
| Asbestos ID in soil <0.1g/kg*         | -      | No visible asbestos detected                                |
| ACM >7mm Estimation*                  | g      | -                                                           | _                                                           | -                                                           | -                                                           | -                                                           |
| FA and AF Estimation*                 | g      | -                                                           | -                                                           | -                                                           | -                                                           | -                                                           |
| ACM >7mm Estimation*                  | %(w/w) | <0.01                                                       | <0.01                                                       | <0.01                                                       | <0.01                                                       | <0.01                                                       |
| FA and AF Estimation*#2               | %(w/w) | <0.001                                                      | <0.001                                                      | <0.001                                                      | <0.001                                                      | <0.001                                                      |

| Asbestos ID - soils NEPM - ASB-001    |        |                                                             |                                                             |                                                             |
|---------------------------------------|--------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Our Reference                         |        | 311057-16                                                   | 311057-19                                                   | 311057-22                                                   |
| Your Reference                        | UNITS  | TP206                                                       | TP207                                                       | TP208                                                       |
| Depth                                 |        | 0-0.1                                                       | 0-0.1                                                       | 0-0.1                                                       |
| Date Sampled                          |        | 17/11/2022                                                  | 17/11/2022                                                  | 17/11/2022                                                  |
| Type of sample                        |        | Soil                                                        | Soil                                                        | Soil                                                        |
| Date analysed                         | -      | 24/11/2022                                                  | 24/11/2022                                                  | 24/11/2022                                                  |
| Sample mass tested                    | g      | 545.92                                                      | 809.06                                                      | 801.37                                                      |
| Sample Description                    | -      | Brown coarse-<br>grained soil &<br>rocks                    | Brown coarse-<br>grained soil &<br>rocks                    | Brown coarse-<br>grained soil &<br>rocks                    |
| Asbestos ID in soil (AS4964) >0.1g/kg | -      | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg |
|                                       |        | Organic fibres<br>detected                                  | Organic fibres<br>detected                                  | Organic fibres<br>detected                                  |
| Trace Analysis                        | -      | No asbestos<br>detected                                     | No asbestos<br>detected                                     | No asbestos<br>detected                                     |
| Total Asbestos <sup>#1</sup>          | g/kg   | <0.1                                                        | <0.1                                                        | <0.1                                                        |
| Asbestos ID in soil <0.1g/kg*         | -      | No visible asbestos detected                                | No visible asbestos detected                                | No visible asbestos detected                                |
| ACM >7mm Estimation*                  | g      | _                                                           | _                                                           | -                                                           |
| FA and AF Estimation*                 | g      | -                                                           | _                                                           | -                                                           |
| ACM >7mm Estimation*                  | %(w/w) | <0.01                                                       | <0.01                                                       | <0.01                                                       |
| FA and AF Estimation*#2               | %(w/w) | <0.001                                                      | <0.001                                                      | <0.001                                                      |

| Asbestos ID - materials    |       |                                      |                                 |                                 |                          |                                 |
|----------------------------|-------|--------------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|
| Our Reference              |       | 311057-31                            | 311057-32                       | 311057-34                       | 311057-35                | 311057-36                       |
| Your Reference             | UNITS | FCF1                                 | FCF2                            | TP205-FCF1                      | TP205-FCF2               | TP205-FCF3                      |
| Depth                      |       | Surface                              | Surface                         | 0.1-0.6                         | 1.0-1.5                  | 1.0-1.5                         |
| Date Sampled               |       | 17/11/2022                           | 17/11/2022                      | 17/11/2022                      | 17/11/2022               | 17/11/2022                      |
| Type of sample             |       | Material                             | Material                        | Material                        | Material                 | Material                        |
| Date analysed              | -     | 24/11/2022                           | 24/11/2022                      | 24/11/2022                      | 24/11/2022               | 24/11/2022                      |
| Mass / Dimension of Sample | -     | 8.07g                                | 11.33g                          | 20.20g                          | 32.79g                   | 11.84g                          |
| Sample Description         | -     | Grey fibre cement<br>material        | Grey fibre cement<br>material   | Grey fibre cement<br>material   | Brown cement<br>material | Grey fibre cement material      |
| Asbestos ID in materials   | -     | No asbestos<br>detected              | Chrysotile asbestos<br>detected | Chrysotile asbestos<br>detected | No asbestos<br>detected  | Chrysotile asbestos<br>detected |
|                            |       | Synthetic mineral<br>fibres detected | Amosite asbestos<br>detected    |                                 |                          |                                 |
| Trace Analysis             | -     | No asbestos<br>detected              | [NT]                            | [NT]                            | No asbestos<br>detected  | [NT]                            |

| vTRH(C6-C10)/BTEXN in Water                         |       |            |
|-----------------------------------------------------|-------|------------|
| Our Reference                                       |       | 311057-30  |
| Your Reference                                      | UNITS | FR2-SHOVEL |
| Depth                                               |       | -          |
| Date Sampled                                        |       | 17/11/2022 |
| Type of sample                                      |       | Water      |
| Date extracted                                      | -     | 22/11/2022 |
| Date analysed                                       | -     | 22/11/2022 |
| TRH C <sub>6</sub> - C <sub>9</sub>                 | µg/L  | 120        |
| TRH C <sub>6</sub> - C <sub>10</sub>                | µg/L  | 130        |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | μg/L  | 130        |
| Benzene                                             | μg/L  | <1         |
| Toluene                                             | μg/L  | <1         |
| Ethylbenzene                                        | μg/L  | <1         |
| m+p-xylene                                          | µg/L  | <2         |
| o-xylene                                            | µg/L  | <1         |
| Naphthalene                                         | μg/L  | <1         |
| Surrogate Dibromofluoromethane                      | %     | 115        |
| Surrogate toluene-d8                                | %     | 98         |
| Surrogate 4-BFB                                     | %     | 80         |

| svTRH (C10-C40) in Water               |       |            |
|----------------------------------------|-------|------------|
| Our Reference                          |       | 311057-30  |
| Your Reference                         | UNITS | FR2-SHOVEL |
| Depth                                  |       | -          |
| Date Sampled                           |       | 17/11/2022 |
| Type of sample                         |       | Water      |
| Date extracted                         | -     | 21/11/2022 |
| Date analysed                          | -     | 23/11/2022 |
| TRH C <sub>10</sub> - C <sub>14</sub>  | µg/L  | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>  | µg/L  | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>  | µg/L  | <100       |
| Total +ve TRH (C10-C36)                | µg/L  | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub> | µg/L  | <50        |
| TRH >C10 - C16 less Naphthalene (F2)   | µg/L  | <50        |
| TRH >C <sub>16</sub> - C <sub>34</sub> | µg/L  | <100       |
| TRH >C <sub>34</sub> - C <sub>40</sub> | µg/L  | <100       |
| Total +ve TRH (>C10-C40)               | µg/L  | <50        |
| Surrogate o-Terphenyl                  | %     | 72         |

| PAHs in Water             |       |            |
|---------------------------|-------|------------|
| Our Reference             |       | 311057-30  |
| Your Reference            | UNITS | FR2-SHOVEL |
| Depth                     |       | -          |
| Date Sampled              |       | 17/11/2022 |
| Type of sample            |       | Water      |
| Date extracted            | -     | 21/11/2022 |
| Date analysed             | -     | 21/11/2022 |
| Naphthalene               | μg/L  | <1         |
| Acenaphthylene            | µg/L  | <1         |
| Acenaphthene              | μg/L  | <1         |
| Fluorene                  | μg/L  | <1         |
| Phenanthrene              | μg/L  | <1         |
| Anthracene                | μg/L  | <1         |
| Fluoranthene              | μg/L  | <1         |
| Pyrene                    | μg/L  | <1         |
| Benzo(a)anthracene        | µg/L  | <1         |
| Chrysene                  | μg/L  | <1         |
| Benzo(b,j+k)fluoranthene  | μg/L  | <2         |
| Benzo(a)pyrene            | μg/L  | <1         |
| Indeno(1,2,3-c,d)pyrene   | μg/L  | <1         |
| Dibenzo(a,h)anthracene    | µg/L  | <1         |
| Benzo(g,h,i)perylene      | µg/L  | <1         |
| Benzo(a)pyrene TEQ        | µg/L  | <5         |
| Total +ve PAH's           | µg/L  | NIL (+)VE  |
| Surrogate p-Terphenyl-d14 | %     | 68         |

| Metals in Waters - Acid extractable |       |            |
|-------------------------------------|-------|------------|
| Our Reference                       |       | 311057-30  |
| Your Reference                      | UNITS | FR2-SHOVEL |
| Depth                               |       | -          |
| Date Sampled                        |       | 17/11/2022 |
| Type of sample                      |       | Water      |
| Date prepared                       | -     | 21/11/2022 |
| Date analysed                       | -     | 22/11/2022 |
| Arsenic - Total                     | mg/L  | <0.05      |
| Cadmium - Total                     | mg/L  | <0.01      |
| Chromium - Total                    | mg/L  | <0.01      |
| Copper - Total                      | mg/L  | 0.8        |
| Lead - Total                        | mg/L  | <0.03      |
| Mercury - Total                     | mg/L  | <0.0005    |
| Nickel - Total                      | mg/L  | <0.02      |
| Zinc - Total                        | mg/L  | <0.02      |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASB-001    | Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.                                                                                                                                                                                                                                                                                                                                                                     |
| ASB-001    | Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques.<br>Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site<br>contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-<br>Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard<br>AS4964-2004.<br>Results reported denoted with * are outside our scope of NATA accreditation. |
|            | <b>NOTE</b> <sup>#1</sup> Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | <b>NOTE</b> <sup>#2</sup> The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.                                                                                                                                                                                                                                                                                                                                                                |
|            | Estimation = Estimated asbestos weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Inorg-008  | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Metals-020 | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Org-020    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                |
| Org-020    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Org-021    | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-021     | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.<br>Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Org-022     | Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Org-022/025 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.<br>For soil results:-<br>1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql> |
| Org-023     | Water samples are analysed directly by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.<br>Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| QUALITY CONT                         | ROL: vTRH | (C6-C10) | BTEXN in Soil |            |   | Du         | plicate    |     | Spike Re   | covery % |
|--------------------------------------|-----------|----------|---------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                     | Units     | PQL      | Method        | Blank      | # | Base       | Dup.       | RPD | LCS-9      | [NT]     |
| Date extracted                       | -         |          |               | 21/11/2022 | 1 | 21/11/2022 | 21/11/2022 |     | 21/11/2022 | [NT]     |
| Date analysed                        | -         |          |               | 23/11/2022 | 1 | 23/11/2022 | 23/11/2022 |     | 23/11/2022 | [NT]     |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg     | 25       | Org-023       | <25        | 1 | <25        | <25        | 0   | 101        | [NT]     |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg     | 25       | Org-023       | <25        | 1 | <25        | <25        | 0   | 101        | [NT]     |
| Benzene                              | mg/kg     | 0.2      | Org-023       | <0.2       | 1 | <0.2       | <0.2       | 0   | 97         | [NT]     |
| Toluene                              | mg/kg     | 0.5      | Org-023       | <0.5       | 1 | <0.5       | <0.5       | 0   | 98         | [NT]     |
| Ethylbenzene                         | mg/kg     | 1        | Org-023       | <1         | 1 | <1         | <1         | 0   | 100        | [NT]     |
| m+p-xylene                           | mg/kg     | 2        | Org-023       | <2         | 1 | <2         | <2         | 0   | 105        | [NT]     |
| o-Xylene                             | mg/kg     | 1        | Org-023       | <1         | 1 | <1         | <1         | 0   | 110        | [NT]     |
| Naphthalene                          | mg/kg     | 1        | Org-023       | <1         | 1 | <1         | <1         | 0   | [NT]       | [NT]     |
| Surrogate aaa-Trifluorotoluene       | %         |          | Org-023       | 91         | 1 | 81         | 83         | 2   | 95         | [NT]     |

| QUALITY CONT                         | ROL: vTRH | (C6-C10) | BTEXN in Soil |       |    | Du         | plicate    |     | Spike Re | covery % |
|--------------------------------------|-----------|----------|---------------|-------|----|------------|------------|-----|----------|----------|
| Test Description                     | Units     | PQL      | Method        | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date extracted                       | -         |          |               | [NT]  | 25 | 21/11/2022 | 21/11/2022 |     |          | [NT]     |
| Date analysed                        | -         |          |               | [NT]  | 25 | 23/11/2022 | 23/11/2022 |     |          | [NT]     |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg     | 25       | Org-023       | [NT]  | 25 | <25        | <25        | 0   |          | [NT]     |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg     | 25       | Org-023       | [NT]  | 25 | <25        | <25        | 0   |          | [NT]     |
| Benzene                              | mg/kg     | 0.2      | Org-023       | [NT]  | 25 | <0.2       | <0.2       | 0   |          | [NT]     |
| Toluene                              | mg/kg     | 0.5      | Org-023       | [NT]  | 25 | <0.5       | <0.5       | 0   |          | [NT]     |
| Ethylbenzene                         | mg/kg     | 1        | Org-023       | [NT]  | 25 | <1         | <1         | 0   |          | [NT]     |
| m+p-xylene                           | mg/kg     | 2        | Org-023       | [NT]  | 25 | <2         | <2         | 0   |          | [NT]     |
| o-Xylene                             | mg/kg     | 1        | Org-023       | [NT]  | 25 | <1         | <1         | 0   |          | [NT]     |
| Naphthalene                          | mg/kg     | 1        | Org-023       | [NT]  | 25 | <1         | <1         | 0   |          | [NT]     |
| Surrogate aaa-Trifluorotoluene       | %         |          | Org-023       | [NT]  | 25 | 82         | 81         | 1   |          | [NT]     |

| QUALITY CO                            | NTROL: svT | RH (C10- | -C40) in Soil |            |   | Du         | plicate    |     | Spike Re   | covery % |
|---------------------------------------|------------|----------|---------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                      | Units      | PQL      | Method        | Blank      | # | Base       | Dup.       | RPD | LCS-9      | [NT]     |
| Date extracted                        | -          |          |               | 21/11/2022 | 1 | 21/11/2022 | 21/11/2022 |     | 21/11/2022 |          |
| Date analysed                         | -          |          |               | 21/11/2022 | 1 | 22/11/2022 | 22/11/2022 |     | 21/11/2022 |          |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg      | 50       | Org-020       | <50        | 1 | <50        | <50        | 0   | 101        |          |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg      | 100      | Org-020       | <100       | 1 | <100       | <100       | 0   | 103        |          |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg      | 100      | Org-020       | <100       | 1 | 150        | 180        | 18  | 86         |          |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg      | 50       | Org-020       | <50        | 1 | <50        | <50        | 0   | 101        |          |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg      | 100      | Org-020       | <100       | 1 | 190        | 210        | 10  | 103        |          |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg      | 100      | Org-020       | <100       | 1 | <100       | <100       | 0   | 86         |          |
| Surrogate o-Terphenyl                 | %          |          | Org-020       | 72         | 1 | 77         | 78         | 1   | 74         |          |

| QUALITY CO                            | NTROL: svT | RH (C10- | -C40) in Soil |       |    | Du         | plicate    |     | Spike Re | covery % |
|---------------------------------------|------------|----------|---------------|-------|----|------------|------------|-----|----------|----------|
| Test Description                      | Units      | PQL      | Method        | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date extracted                        | -          |          |               |       | 25 | 21/11/2022 | 21/11/2022 |     |          | [NT]     |
| Date analysed                         | -          |          |               |       | 25 | 22/11/2022 | 22/11/2022 |     |          | [NT]     |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg      | 50       | Org-020       |       | 25 | <50        | <50        | 0   |          | [NT]     |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg      | 100      | Org-020       |       | 25 | <100       | <100       | 0   |          | [NT]     |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg      | 100      | Org-020       |       | 25 | <100       | <100       | 0   |          | [NT]     |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg      | 50       | Org-020       |       | 25 | <50        | <50        | 0   |          | [NT]     |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg      | 100      | Org-020       |       | 25 | 100        | 120        | 18  |          | [NT]     |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg      | 100      | Org-020       |       | 25 | <100       | <100       | 0   |          | [NT]     |
| Surrogate o-Terphenyl                 | %          |          | Org-020       |       | 25 | 72         | 73         | 1   |          | [NT]     |

| QUAL                      | ITY CONTRC | L: PAHs | in Soil     |            |   | Du         | plicate    |     | Spike Re   | covery % |
|---------------------------|------------|---------|-------------|------------|---|------------|------------|-----|------------|----------|
| Test Description          | Units      | PQL     | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-9      | [NT]     |
| Date extracted            | -          |         |             | 21/11/2022 | 1 | 21/11/2022 | 21/11/2022 |     | 21/11/2022 |          |
| Date analysed             | -          |         |             | 24/11/2022 | 1 | 24/11/2022 | 24/11/2022 |     | 24/11/2022 |          |
| Naphthalene               | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 88         |          |
| Acenaphthylene            | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Acenaphthene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 87         |          |
| Fluorene                  | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 88         |          |
| Phenanthrene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 90         |          |
| Anthracene                | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Fluoranthene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 88         |          |
| Pyrene                    | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 89         |          |
| Benzo(a)anthracene        | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Chrysene                  | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 73         |          |
| Benzo(b,j+k)fluoranthene  | mg/kg      | 0.2     | Org-022/025 | <0.2       | 1 | <0.2       | <0.2       | 0   | [NT]       |          |
| Benzo(a)pyrene            | mg/kg      | 0.05    | Org-022/025 | <0.05      | 1 | <0.05      | <0.05      | 0   | 80         |          |
| Indeno(1,2,3-c,d)pyrene   | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Dibenzo(a,h)anthracene    | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Benzo(g,h,i)perylene      | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Surrogate p-Terphenyl-d14 | %          |         | Org-022/025 | 80         | 1 | 78         | 77         | 1   | 79         |          |

| QUALIT                    | TY CONTRC | L: PAHs | in Soil     |       |    | Du         | plicate    |     | Spike Re | covery % |
|---------------------------|-----------|---------|-------------|-------|----|------------|------------|-----|----------|----------|
| Test Description          | Units     | PQL     | Method      | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date extracted            | -         |         |             | [NT]  | 25 | 21/11/2022 | 21/11/2022 |     |          | [NT]     |
| Date analysed             | -         |         |             | [NT]  | 25 | 24/11/2022 | 24/11/2022 |     |          | [NT]     |
| Naphthalene               | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Acenaphthylene            | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Acenaphthene              | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Fluorene                  | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Phenanthrene              | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Anthracene                | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Fluoranthene              | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Pyrene                    | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Benzo(a)anthracene        | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Chrysene                  | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Benzo(b,j+k)fluoranthene  | mg/kg     | 0.2     | Org-022/025 | [NT]  | 25 | <0.2       | <0.2       | 0   |          | [NT]     |
| Benzo(a)pyrene            | mg/kg     | 0.05    | Org-022/025 | [NT]  | 25 | <0.05      | <0.05      | 0   |          | [NT]     |
| Indeno(1,2,3-c,d)pyrene   | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Dibenzo(a,h)anthracene    | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Benzo(g,h,i)perylene      | mg/kg     | 0.1     | Org-022/025 | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Surrogate p-Terphenyl-d14 | %         |         | Org-022/025 | [NT]  | 25 | 76         | 73         | 4   |          | [NT]     |

| QUALITY CO          | NTROL: Organo | chlorine F | Pesticides in soil |            |   | Du         | plicate    |     | Spike Red  | overy % |
|---------------------|---------------|------------|--------------------|------------|---|------------|------------|-----|------------|---------|
| Test Description    | Units         | PQL        | Method             | Blank      | # | Base       | Dup.       | RPD | LCS-9      | [NT]    |
| Date extracted      | -             |            |                    | 21/11/2022 | 1 | 21/11/2022 | 21/11/2022 |     | 21/11/2022 |         |
| Date analysed       | -             |            |                    | 24/11/2022 | 1 | 24/11/2022 | 24/11/2022 |     | 24/11/2022 |         |
| alpha-BHC           | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 96         |         |
| НСВ                 | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| beta-BHC            | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 92         |         |
| gamma-BHC           | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| Heptachlor          | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 103        |         |
| delta-BHC           | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| Aldrin              | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 89         |         |
| Heptachlor Epoxide  | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 84         |         |
| gamma-Chlordane     | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| alpha-chlordane     | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| Endosulfan I        | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| pp-DDE              | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 92         |         |
| Dieldrin            | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 94         |         |
| Endrin              | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 100        |         |
| Endosulfan II       | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| pp-DDD              | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 70         |         |
| Endrin Aldehyde     | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| pp-DDT              | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| Endosulfan Sulphate | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 120        |         |
| Methoxychlor        | mg/kg         | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |         |
| Surrogate TCMX      | %             |            | Org-022/025        | 82         | 1 | 80         | 79         | 1   | 82         |         |

| QUALITY CO          | NTROL: Organo | chlorine F | Pesticides in soil |       |    | Du         | plicate    |     | Spike Re | ecovery % |
|---------------------|---------------|------------|--------------------|-------|----|------------|------------|-----|----------|-----------|
| Test Description    | Units         | PQL        | Method             | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]      |
| Date extracted      | -             |            |                    | [NT]  | 25 | 21/11/2022 | 21/11/2022 |     |          | [NT]      |
| Date analysed       | -             |            |                    | [NT]  | 25 | 24/11/2022 | 24/11/2022 |     |          | [NT]      |
| alpha-BHC           | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| НСВ                 | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| beta-BHC            | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| gamma-BHC           | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Heptachlor          | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| delta-BHC           | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Aldrin              | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Heptachlor Epoxide  | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| gamma-Chlordane     | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| alpha-chlordane     | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Endosulfan I        | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| pp-DDE              | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Dieldrin            | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Endrin              | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Endosulfan II       | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| pp-DDD              | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Endrin Aldehyde     | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| pp-DDT              | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Endosulfan Sulphate | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Methoxychlor        | mg/kg         | 0.1        | Org-022/025        | [NT]  | 25 | <0.1       | <0.1       | 0   |          | [NT]      |
| Surrogate TCMX      | %             |            | Org-022/025        | [NT]  | 25 | 80         | 79         | 1   |          | [NT]      |

| QUALITY CONTRO            | L: Organoph | nosphorus | Pesticides in Soil |            |   | Du         | plicate    |     | Spike Re   | covery % |
|---------------------------|-------------|-----------|--------------------|------------|---|------------|------------|-----|------------|----------|
| Test Description          | Units       | PQL       | Method             | Blank      | # | Base       | Dup.       | RPD | LCS-9      | [NT]     |
| Date extracted            | -           |           |                    | 21/11/2022 | 1 | 21/11/2022 | 21/11/2022 |     | 21/11/2022 |          |
| Date analysed             | -           |           |                    | 24/11/2022 | 1 | 24/11/2022 | 24/11/2022 |     | 24/11/2022 |          |
| Dichlorvos                | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 81         |          |
| Dimethoate                | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Diazinon                  | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Chlorpyriphos-methyl      | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Ronnel                    | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 79         |          |
| Fenitrothion              | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 77         |          |
| Malathion                 | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 81         |          |
| Chlorpyriphos             | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 94         |          |
| Parathion                 | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 82         |          |
| Bromophos-ethyl           | mg/kg       | 0.1       | Org-022            | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Ethion                    | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 86         |          |
| Azinphos-methyl (Guthion) | mg/kg       | 0.1       | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Surrogate TCMX            | %           |           | Org-022/025        | 82         | 1 | 80         | 79         | 1   | 82         |          |

| QUALITY CONTRO            | L: Organopł | nosphorus | Pesticides in Soil |       |    | Du         | plicate    |     | Spike Re | covery % |
|---------------------------|-------------|-----------|--------------------|-------|----|------------|------------|-----|----------|----------|
| Test Description          | Units       | PQL       | Method             | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date extracted            | -           |           |                    |       | 25 | 21/11/2022 | 21/11/2022 |     |          | [NT]     |
| Date analysed             | -           |           |                    |       | 25 | 24/11/2022 | 24/11/2022 |     |          | [NT]     |
| Dichlorvos                | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Dimethoate                | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Diazinon                  | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Chlorpyriphos-methyl      | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Ronnel                    | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Fenitrothion              | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Malathion                 | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Chlorpyriphos             | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Parathion                 | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Bromophos-ethyl           | mg/kg       | 0.1       | Org-022            |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Ethion                    | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Azinphos-methyl (Guthion) | mg/kg       | 0.1       | Org-022/025        |       | 25 | <0.1       | <0.1       | 0   |          | [NT]     |
| Surrogate TCMX            | %           |           | Org-022/025        |       | 25 | 80         | 79         | 1   |          | [NT]     |

| QUALIT           | Y CONTRO | L: PCBs | in Soil |            |   | Du         | plicate    |     | Spike Re   | covery % |
|------------------|----------|---------|---------|------------|---|------------|------------|-----|------------|----------|
| Test Description | Units    | PQL     | Method  | Blank      | # | Base       | Dup.       | RPD | LCS-9      | [NT]     |
| Date extracted   | -        |         |         | 21/11/2022 | 1 | 21/11/2022 | 21/11/2022 |     | 21/11/2022 |          |
| Date analysed    | -        |         |         | 24/11/2022 | 1 | 24/11/2022 | 24/11/2022 |     | 24/11/2022 |          |
| Aroclor 1016     | mg/kg    | 0.1     | Org-021 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1221     | mg/kg    | 0.1     | Org-021 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1232     | mg/kg    | 0.1     | Org-021 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1242     | mg/kg    | 0.1     | Org-021 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1248     | mg/kg    | 0.1     | Org-021 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1254     | mg/kg    | 0.1     | Org-021 | <0.1       | 1 | <0.1       | <0.1       | 0   | 111        |          |
| Aroclor 1260     | mg/kg    | 0.1     | Org-021 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]       |          |
| Surrogate TCMX   | %        |         | Org-021 | 82         | 1 | 80         | 79         | 1   | 82         |          |

| QUALIT           | Y CONTRO | L: PCBs | in Soil |       |    | Du         | plicate    |     | Spike Re | covery % |
|------------------|----------|---------|---------|-------|----|------------|------------|-----|----------|----------|
| Test Description | Units    | PQL     | Method  | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date extracted   | -        |         |         | [NT]  | 25 | 21/11/2022 | 21/11/2022 |     | [NT]     |          |
| Date analysed    | -        |         |         | [NT]  | 25 | 24/11/2022 | 24/11/2022 |     | [NT]     |          |
| Aroclor 1016     | mg/kg    | 0.1     | Org-021 | [NT]  | 25 | <0.1       | <0.1       | 0   | [NT]     |          |
| Aroclor 1221     | mg/kg    | 0.1     | Org-021 | [NT]  | 25 | <0.1       | <0.1       | 0   | [NT]     |          |
| Aroclor 1232     | mg/kg    | 0.1     | Org-021 | [NT]  | 25 | <0.1       | <0.1       | 0   | [NT]     |          |
| Aroclor 1242     | mg/kg    | 0.1     | Org-021 | [NT]  | 25 | <0.1       | <0.1       | 0   | [NT]     |          |
| Aroclor 1248     | mg/kg    | 0.1     | Org-021 | [NT]  | 25 | <0.1       | <0.1       | 0   | [NT]     |          |
| Aroclor 1254     | mg/kg    | 0.1     | Org-021 | [NT]  | 25 | <0.1       | <0.1       | 0   | [NT]     |          |
| Aroclor 1260     | mg/kg    | 0.1     | Org-021 | [NT]  | 25 | <0.1       | <0.1       | 0   | [NT]     |          |
| Surrogate TCMX   | %        |         | Org-021 | [NT]  | 25 | 80         | 79         | 1   | [NT]     | [NT]     |

| QUALITY CONT     | ROL: Acid E | xtractabl | e metals in soil |            |   | Du         | plicate    |     | Spike Re   | covery % |
|------------------|-------------|-----------|------------------|------------|---|------------|------------|-----|------------|----------|
| Test Description | Units       | PQL       | Method           | Blank      | # | Base       | Dup.       | RPD | LCS-9      | [NT]     |
| Date prepared    | -           |           |                  | 22/11/2022 | 1 | 22/11/2022 | 22/11/2022 |     | 22/11/2022 |          |
| Date analysed    | -           |           |                  | 23/11/2022 | 1 | 23/11/2022 | 23/11/2022 |     | 23/11/2022 |          |
| Arsenic          | mg/kg       | 4         | Metals-020       | <4         | 1 | <4         | <4         | 0   | 104        |          |
| Cadmium          | mg/kg       | 0.4       | Metals-020       | <0.4       | 1 | <0.4       | <0.4       | 0   | 103        |          |
| Chromium         | mg/kg       | 1         | Metals-020       | <1         | 1 | 43         | 45         | 5   | 100        |          |
| Copper           | mg/kg       | 1         | Metals-020       | <1         | 1 | 30         | 34         | 12  | 96         |          |
| Lead             | mg/kg       | 1         | Metals-020       | <1         | 1 | 41         | 50         | 20  | 104        |          |
| Mercury          | mg/kg       | 0.1       | Metals-021       | <0.1       | 1 | 0.1        | 0.1        | 0   | 88         |          |
| Nickel           | mg/kg       | 1         | Metals-020       | <1         | 1 | 50         | 58         | 15  | 101        |          |
| Zinc             | mg/kg       | 1         | Metals-020       | <1         | 1 | 70         | 81         | 15  | 103        | [NT]     |

| QUALITY CONT     |       | Duplicate Spike Reco |            |       |    |            |            |     |      |      |
|------------------|-------|----------------------|------------|-------|----|------------|------------|-----|------|------|
| Test Description | Units | PQL                  | Method     | Blank | #  | Base       | Dup.       | RPD | [NT] | [NT] |
| Date prepared    | -     |                      |            | [NT]  | 25 | 22/11/2022 | 22/11/2022 |     |      | [NT] |
| Date analysed    | -     |                      |            | [NT]  | 25 | 23/11/2022 | 23/11/2022 |     |      | [NT] |
| Arsenic          | mg/kg | 4                    | Metals-020 | [NT]  | 25 | <4         | <4         | 0   |      | [NT] |
| Cadmium          | mg/kg | 0.4                  | Metals-020 | [NT]  | 25 | <0.4       | <0.4       | 0   |      | [NT] |
| Chromium         | mg/kg | 1                    | Metals-020 | [NT]  | 25 | 43         | 41         | 5   |      | [NT] |
| Copper           | mg/kg | 1                    | Metals-020 | [NT]  | 25 | 19         | 18         | 5   |      | [NT] |
| Lead             | mg/kg | 1                    | Metals-020 | [NT]  | 25 | 16         | 18         | 12  |      | [NT] |
| Mercury          | mg/kg | 0.1                  | Metals-021 | [NT]  | 25 | <0.1       | <0.1       | 0   |      | [NT] |
| Nickel           | mg/kg | 1                    | Metals-020 | [NT]  | 25 | 20         | 19         | 5   |      | [NT] |
| Zinc             | mg/kg | 1                    | Metals-020 | [NT]  | 25 | 54         | 53         | 2   | [NT] | [NT] |

| QUALITY CONTR                        |       |     | Duplicate Spike Re |            |      |      | covery % |      |            |      |
|--------------------------------------|-------|-----|--------------------|------------|------|------|----------|------|------------|------|
| Test Description                     | Units | PQL | Method             | Blank      | #    | Base | Dup.     | RPD  | LCS-W2     | [NT] |
| Date extracted                       | -     |     |                    | 21/11/2022 | [NT] |      | [NT]     | [NT] | 22/11/2022 |      |
| Date analysed                        | -     |     |                    | 23/11/2022 | [NT] |      | [NT]     | [NT] | 22/11/2022 |      |
| TRH C <sub>6</sub> - C <sub>9</sub>  | µg/L  | 10  | Org-023            | <10        | [NT] |      | [NT]     | [NT] | 92         |      |
| TRH C <sub>6</sub> - C <sub>10</sub> | µg/L  | 10  | Org-023            | <10        | [NT] |      | [NT]     | [NT] | 92         |      |
| Benzene                              | µg/L  | 1   | Org-023            | <1         | [NT] |      | [NT]     | [NT] | 88         |      |
| Toluene                              | µg/L  | 1   | Org-023            | <1         | [NT] |      | [NT]     | [NT] | 91         |      |
| Ethylbenzene                         | µg/L  | 1   | Org-023            | <1         | [NT] |      | [NT]     | [NT] | 93         |      |
| m+p-xylene                           | µg/L  | 2   | Org-023            | <2         | [NT] |      | [NT]     | [NT] | 93         |      |
| o-xylene                             | µg/L  | 1   | Org-023            | <1         | [NT] |      | [NT]     | [NT] | 94         |      |
| Naphthalene                          | µg/L  | 1   | Org-023            | <1         | [NT] |      | [NT]     | [NT] | [NT]       |      |
| Surrogate Dibromofluoromethane       | %     |     | Org-023            | 103        | [NT] |      | [NT]     | [NT] | 98         |      |
| Surrogate toluene-d8                 | %     |     | Org-023            | 98         | [NT] |      | [NT]     | [NT] | 100        |      |
| Surrogate 4-BFB                      | %     |     | Org-023            | 98         | [NT] |      | [NT]     | [NT] | 97         |      |

| QUALITY CON                            | Du    | Duplicate Spike Recove |         |            |      |      |      |      |            |      |
|----------------------------------------|-------|------------------------|---------|------------|------|------|------|------|------------|------|
| Test Description                       | Units | PQL                    | Method  | Blank      | #    | Base | Dup. | RPD  | LCS-W1     | [NT] |
| Date extracted                         | -     |                        |         | 21/11/2022 | [NT] |      | [NT] | [NT] | 21/11/2022 |      |
| Date analysed                          | -     |                        |         | 22/11/2022 | [NT] |      | [NT] | [NT] | 22/11/2022 |      |
| TRH C <sub>10</sub> - C <sub>14</sub>  | µg/L  | 50                     | Org-020 | <50        | [NT] |      | [NT] | [NT] | 97         |      |
| TRH C <sub>15</sub> - C <sub>28</sub>  | µg/L  | 100                    | Org-020 | <100       | [NT] |      | [NT] | [NT] | 117        |      |
| TRH C <sub>29</sub> - C <sub>36</sub>  | µg/L  | 100                    | Org-020 | <100       | [NT] |      | [NT] | [NT] | 129        |      |
| TRH >C <sub>10</sub> - C <sub>16</sub> | µg/L  | 50                     | Org-020 | <50        | [NT] |      | [NT] | [NT] | 97         |      |
| TRH >C <sub>16</sub> - C <sub>34</sub> | µg/L  | 100                    | Org-020 | <100       | [NT] |      | [NT] | [NT] | 117        |      |
| TRH >C <sub>34</sub> - C <sub>40</sub> | µg/L  | 100                    | Org-020 | <100       | [NT] |      | [NT] | [NT] | 129        |      |
| Surrogate o-Terphenyl                  | %     |                        | Org-020 | 114        | [NT] |      | [NT] | [NT] | 89         |      |

| QUALIT                    | Y CONTROL | .: PAHs ir | Water       |            |      | Du   | plicate | Spike Recovery % |            |      |  |
|---------------------------|-----------|------------|-------------|------------|------|------|---------|------------------|------------|------|--|
| Test Description          | Units     | PQL        | Method      | Blank      | #    | Base | Dup.    | RPD              | LCS-W1     | [NT] |  |
| Date extracted            | -         |            |             | 21/11/2022 | [NT] |      | [NT]    | [NT]             | 21/11/2022 |      |  |
| Date analysed             | -         |            |             | 21/11/2022 | [NT] |      | [NT]    | [NT]             | 21/11/2022 |      |  |
| Naphthalene               | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 86         |      |  |
| Acenaphthylene            | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |  |
| Acenaphthene              | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 92         |      |  |
| Fluorene                  | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 91         |      |  |
| Phenanthrene              | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 94         |      |  |
| Anthracene                | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |  |
| Fluoranthene              | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 89         |      |  |
| Pyrene                    | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 96         |      |  |
| Benzo(a)anthracene        | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |  |
| Chrysene                  | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 81         |      |  |
| Benzo(b,j+k)fluoranthene  | µg/L      | 2          | Org-022/025 | <2         | [NT] |      | [NT]    | [NT]             | [NT]       |      |  |
| Benzo(a)pyrene            | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 77         |      |  |
| Indeno(1,2,3-c,d)pyrene   | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |  |
| Dibenzo(a,h)anthracene    | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |  |
| Benzo(g,h,i)perylene      | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |  |
| Surrogate p-Terphenyl-d14 | %         |            | Org-022/025 | 88         | [NT] |      | [NT]    | [NT]             | 92         |      |  |

| QUALITY CONTRO   |       | Du     | plicate    |            | Spike Recovery % |      |      |      |            |      |
|------------------|-------|--------|------------|------------|------------------|------|------|------|------------|------|
| Test Description | Units | PQL    | Method     | Blank      | #                | Base | Dup. | RPD  | LCS-W1     | [NT] |
| Date prepared    | -     |        |            | 23/11/2022 | [NT]             |      | [NT] | [NT] | 23/11/2022 |      |
| Date analysed    | -     |        |            | 23/11/2022 | [NT]             |      | [NT] | [NT] | 23/11/2022 |      |
| Arsenic - Total  | mg/L  | 0.05   | Metals-020 | <0.05      | [NT]             |      | [NT] | [NT] | 95         |      |
| Cadmium - Total  | mg/L  | 0.01   | Metals-020 | <0.01      | [NT]             |      | [NT] | [NT] | 94         |      |
| Chromium - Total | mg/L  | 0.01   | Metals-020 | <0.01      | [NT]             |      | [NT] | [NT] | 90         |      |
| Copper - Total   | mg/L  | 0.01   | Metals-020 | <0.01      | [NT]             |      | [NT] | [NT] | 88         |      |
| Lead - Total     | mg/L  | 0.03   | Metals-020 | <0.03      | [NT]             |      | [NT] | [NT] | 93         |      |
| Mercury - Total  | mg/L  | 0.0005 | Metals-021 | <0.0005    | [NT]             |      | [NT] | [NT] | 100        |      |
| Nickel - Total   | mg/L  | 0.02   | Metals-020 | <0.02      | [NT]             |      | [NT] | [NT] | 91         |      |
| Zinc - Total     | mg/L  | 0.02   | Metals-020 | <0.02      | [NT]             |      | [NT] | [NT] | 96         |      |

| Result Definiti | esult Definitions                         |  |  |  |  |  |  |
|-----------------|-------------------------------------------|--|--|--|--|--|--|
| NT              | Not tested                                |  |  |  |  |  |  |
| NA              | Test not required                         |  |  |  |  |  |  |
| INS             | Insufficient sample for this test         |  |  |  |  |  |  |
| PQL             | Practical Quantitation Limit              |  |  |  |  |  |  |
| <               | Less than                                 |  |  |  |  |  |  |
| >               | Greater than                              |  |  |  |  |  |  |
| RPD             | Relative Percent Difference               |  |  |  |  |  |  |
| LCS             | Laboratory Control Sample                 |  |  |  |  |  |  |
| NS              | Not specified                             |  |  |  |  |  |  |
| NEPM            | National Environmental Protection Measure |  |  |  |  |  |  |
| NR              | Not Reported                              |  |  |  |  |  |  |

| Quality Contro                     | Quality Control Definitions                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |  |  |  |  |  |  |  |  |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |  |  |  |  |  |  |  |  |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |  |  |  |  |  |  |  |  |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |  |  |  |  |  |  |  |  |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |  |  |  |  |  |  |  |  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

#### **Report Comments**

vTRH & BTEXN in Soil NEPM - The positive result in the rinsate sample is due to THM's consistent with the use of tap water.

#### Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

## SAMPLE RECEIPT ADVICE

| Client Details |                 |
|----------------|-----------------|
| Client         | JK Environments |
| Attention      | Katrina Taylor  |

| Sample Login Details                 |                 |  |
|--------------------------------------|-----------------|--|
| Your reference                       | E30596PT, Cooma |  |
| Envirolab Reference                  | 311057          |  |
| Date Sample Received                 | 18/11/2022      |  |
| Date Instructions Received           | 18/11/2022      |  |
| Date Results Expected to be Reported | 25/11/2022      |  |

| Sample Condition                                       |                              |
|--------------------------------------------------------|------------------------------|
| Samples received in appropriate condition for analysis | Yes                          |
| No. of Samples Provided                                | 29 Soil, 1 Water, 6 Material |
| Turnaround Time Requested                              | Standard                     |
| Temperature on Receipt (°C)                            | 12                           |
| Cooling Method                                         | Ice Pack                     |
| Sampling Date Provided                                 | YES                          |

Comments Nil

Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID     | VTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | <b>Organochlorine Pesticides in soil</b> | Organophosphorus Pesticides in<br>Soil | PCBs in Soil | Acid Extractable metalsin soil | Asbestos ID - soils NEPM - ASB-<br>001 | Asbestos ID - materials | vTRH(C6-C10)/BTEXN in Water | svTRH (C10-C40) in Water | PAHsin Water | Metals in Waters -Acid<br>extractable | On Hold      |
|---------------|----------------------------|-------------------------|--------------|------------------------------------------|----------------------------------------|--------------|--------------------------------|----------------------------------------|-------------------------|-----------------------------|--------------------------|--------------|---------------------------------------|--------------|
| TP201-0-0.1   | ✓                          | ✓                       | ✓            | ✓                                        | $\checkmark$                           | ✓            | ✓                              | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP201-0.5-0.6 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TP201-1.0-1.2 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP202-0-0.1   | ✓                          | ✓                       | ✓            | ✓                                        | ✓                                      | ✓            | ✓                              | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP202-0.5-0.6 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP202-0.8-1.0 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP203-0-0.1   | ✓                          | ✓                       | ✓            | ✓                                        | ✓                                      | ✓            | ✓                              | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP203-0.4-0.6 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP203-1.0-1.2 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP204-0-0.1   | ✓                          | ✓                       | $\checkmark$ | ✓                                        | $\checkmark$                           | $\checkmark$ | ✓                              | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP204-0.6-0.8 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP205-0-0.1   | ✓                          | ✓                       | ✓            | ✓                                        | $\checkmark$                           | ✓            | ✓                              | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP205-0.4-0.5 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TP205-1.0-1.2 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TP205-1.5-1.6 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TP206-0-0.1   | $\checkmark$               | $\checkmark$            | $\checkmark$ | $\checkmark$                             | $\checkmark$                           | $\checkmark$ | $\checkmark$                   | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP206-0.5-0.7 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TP206-0.7-0.9 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TP207-0-0.1   | $\checkmark$               | $\checkmark$            | $\checkmark$ | ✓                                        | $\checkmark$                           | $\checkmark$ | ✓                              | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP207-0.2-0.4 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP207-0.8-1.0 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP208-0-0.1   | ✓                          | ✓                       | ✓            | ✓                                        | ✓                                      | ✓            | ✓                              | $\checkmark$                           |                         |                             |                          |              |                                       |              |
| TP208-0.2-0.4 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| TP208-0.6-0.8 |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | ✓            |
| SDUP1         | ✓                          | ✓                       | ✓            | ✓                                        | ✓                                      | ✓            | ✓                              |                                        |                         |                             |                          |              |                                       |              |
| SDUP3         |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| SDUP4         |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TB-S2         | ✓                          | ✓                       | ✓            |                                          |                                        |              | ✓                              |                                        |                         |                             |                          |              |                                       |              |
| TS-S2         | ✓                          |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       |              |
| FR2-SHOVEL    | $\checkmark$               | ✓                       | ✓            |                                          |                                        |              | ✓                              |                                        |                         | ✓                           | ✓                        | ✓            | ✓                                     |              |
| FCF1-Surface  |                            |                         |              |                                          |                                        |              |                                |                                        | ✓                       |                             |                          |              |                                       |              |
| FCF2-Surface  |                            |                         |              |                                          |                                        |              |                                |                                        | √                       |                             |                          |              |                                       |              |



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID          | vTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | <b>Organochlorine Pesticides in soil</b> | Organophosphorus Pesticides in<br>Soil | PCBs in Soil | Acid Extractable metalsin soil | Asbestos ID - soils NEPM - ASB-<br>001 | Asbestos ID - materials | vTRH(C6-C10)/BTEXN in Water | svTRH (C10-C40) in Water | PAHsin Water | Metals in Waters -Acid<br>extractable | On Hold      |
|--------------------|----------------------------|-------------------------|--------------|------------------------------------------|----------------------------------------|--------------|--------------------------------|----------------------------------------|-------------------------|-----------------------------|--------------------------|--------------|---------------------------------------|--------------|
| FCF3-Surface       |                            |                         |              |                                          |                                        |              |                                |                                        |                         |                             |                          |              |                                       | $\checkmark$ |
| TP205-FCF1-0.1-0.6 |                            |                         |              |                                          |                                        |              |                                |                                        | $\checkmark$            |                             |                          |              |                                       |              |
| TP205-FCF2-1.0-1.5 |                            |                         |              |                                          |                                        |              |                                |                                        | ✓                       |                             |                          |              |                                       |              |
| TP205-FCF3-1.0-1.5 |                            |                         |              |                                          |                                        |              |                                |                                        | ✓                       |                             |                          |              |                                       |              |

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

| SAMPLE | AND | CHAIN | OF CUS | TODY | FORM |
|--------|-----|-------|--------|------|------|
|        |     |       |        |      |      |

| P: (02) 99106)<br>F: (02) 99106) | :HATSWOOD NSW 2067<br>1: (02) 99106200<br>1: (02) 99106201 |                  |                | Date Results <u>STANDARD</u><br>Required: |        |                       |                                                             |          |                        |                         | <b>JKEnvironments</b><br>REAR OF 115 WICKS ROAD<br>MACQUARIE PARK, NSW 2113<br>P: 02-9888 5000 F: 02-9888 5001 |                    |        |            |                                    |                                     |               |                |
|----------------------------------|------------------------------------------------------------|------------------|----------------|-------------------------------------------|--------|-----------------------|-------------------------------------------------------------|----------|------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|--------|------------|------------------------------------|-------------------------------------|---------------|----------------|
| Attention: Ail                   | een                                                        |                  |                | Page:                                     |        | 1_of 2                | Attention: Katrina Taylor.<br>ktaylor@jkenvironments.com.au |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| Location:                        | Cooma                                                      |                  |                |                                           | -      |                       |                                                             | -        |                        | San                     | iple P                                                                                                         | eserve             |        |            |                                    |                                     | -             |                |
| Sampler:                         | AD                                                         |                  | 1              | 6                                         |        | 1                     |                                                             |          |                        | 1                       | T                                                                                                              | ests Re            | equire | ed 🗸       | -                                  |                                     | 1.05          | rolat          |
| Date<br>Sampled                  | Lab<br>Ref: '                                              | Sample<br>Number | Depth (m)      | Sample<br>Container                       | PID    | Sample<br>Description | Combo 6                                                     | Combo 3  | Asbestos (WA<br>500mL) | Asbestos<br>(Detection) | BTEX                                                                                                           |                    |        |            | ROU<br>No:                         | L C                                 | hatsv<br>Ph   | 12             |
| 17/11/2022                       | 1                                                          |                  | 0-0.1          | G, A                                      | 0.9    | F: Silty Clay         | Х                                                           |          | X                      |                         | -                                                                                                              | -                  |        |            |                                    | eived                               |               |                |
| 17/11/2022                       | 2                                                          | TP201            | 0.5-0.6        | G, A                                      | 0.6    | F: Silty Clay         | -                                                           |          |                        |                         |                                                                                                                |                    |        | Tim<br>Rec | <del>: Rec</del><br>eiy <i>c</i> d | <del>Sivea</del><br>B <del>vi</del> | - 1           | H١             |
| 17/11/2022                       | 3                                                          | TP201            | 1.0-1.2        | G, A                                      | 0.5    | XW Granite            |                                                             |          | 1                      | <u> </u>                |                                                                                                                |                    |        | Тел        | d a                                | alin                                | nbien         | <del>ا</del> ط |
| 17/11/2022                       | 4                                                          | TP202            | 0-0.1          | G, A                                      | 0.5    | F: Silty Clay         | x                                                           |          | X                      | 1                       | 1                                                                                                              |                    |        | Coo<br>Sec |                                    |                                     | /pac<br>/Brol | en/N           |
| 17/11/2022                       | 2                                                          | TP202            | 0.5-0.6        | G, A                                      | 0      | F: Silty Clay         |                                                             |          | 1                      | 1                       | 1                                                                                                              |                    |        |            | Ē                                  |                                     | ŕ             |                |
| 17/11/2022                       | 6                                                          | TP202            | 0.8-1.0        | G, A                                      | 0      | XW Granite            |                                                             | -        |                        | 1                       |                                                                                                                |                    |        |            |                                    | -                                   |               |                |
| 17/11/2022                       | 7                                                          | TP203            | 0-0.1          | G, A                                      | 0.7    | F: Silty Sandy Gravel | X                                                           |          | X                      |                         | -                                                                                                              |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 8                                                          | TP <b>20</b> 3   | 0.4-0.6        | G, A                                      | 1      | F: Silty Clay         |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               | 1              |
| 17/11/2022                       | 9                                                          | TP203            | 1.0-1.2        | G, A                                      | 0.8    | Silty Clay            |                                                             |          |                        | 1                       |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 10                                                         | TP204            | 0-0.1          | G, A                                      | 0.8    | F: Silty Clay         | X                                                           |          | X                      |                         |                                                                                                                |                    |        |            |                                    |                                     |               | 1              |
| 17/11/2022                       | 4                                                          | тр204            | 0.6-0.8        | G, A _                                    | _ 0.7  | XWiGranite            |                                                             | -        | 1                      | 1                       |                                                                                                                |                    |        |            |                                    | -                                   |               | ~              |
| 17/11/2022                       | 12                                                         | TP205            | 0-0.1          | G, A                                      | 0.3    | F: Silty Clay         | X                                                           |          | X                      | 1                       |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 13                                                         | TP205            | 0.4-0.5        | G, A                                      | 0.4    | F: Silty Clay         |                                                             | <u> </u> |                        |                         | 1                                                                                                              |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 14                                                         | TP205            | 1.0-1.2        | G, A                                      | 1.1    | F: Silty Clay         |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 15                                                         | TP205            | 1.5-1.6        | G, A                                      | 0.9    | XW Granite            |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               | 1              |
| 17/11/2022                       | 16                                                         | TP206            | 0-0.1          | G, A                                      | 0.4    | F: Silty Clay         | X                                                           |          | X                      |                         |                                                                                                                |                    |        |            |                                    | ,                                   |               |                |
| 17/11/2022                       | 17                                                         | TP206            | 0.5-0.7        | G, A                                      | 0.7    | F: Silty Clay         |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 18                                                         | TP206            | 0.7-0.9        | G, A                                      | 1.1    | XW Granite            |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 19                                                         | TP207            | 0-0.1          | G, A                                      | 0.6    | F: Silty Clay         | X                                                           |          | X                      |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | າຍ                                                         | TP207            | 0.2-0.4        | G, A                                      | 1.8    | F: Silty Clay         |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 2                                                          | TP207            | 0.8-1.0        | G, A                                      | 2.3    | Silty Clay            |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 22                                                         | TP208            | 0-0.1          | G, A                                      | 1      | F: Silty Clay         | X                                                           |          | X                      |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | 23                                                         | TP208            | 0.2-0.4        | G, A                                      | 2.3    | F: Silty Clay         |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       | I .                                                        | TP208            | 0.6-0.8        | G, A                                      | 3.4    | Silty Clay            |                                                             |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| 17/11/2022                       |                                                            | SDUP1            | _ ·            | G                                         | _      | Soil Duplicate        | X                                                           |          |                        |                         |                                                                                                                |                    |        |            |                                    |                                     |               |                |
| Remarks (cor                     | nments                                                     | /detection li    | imits required | ):                                        |        |                       | A - Zi                                                      | plock    |                        | stos B                  | NO3 b                                                                                                          | P - Pla:<br>ottle, | 2x BT  | -          | ls                                 |                                     |               |                |
| Relinquished                     | By: AD                                                     |                  |                | Date: 18                                  | .11.22 |                       | Time                                                        |          |                        |                         | Rece                                                                                                           | ived B             | v.     |            |                                    | Date<br>18/                         | :<br>11/2     | 22             |

.

|                                                                     |              |                        |                      | SAMP                                         | LE AN    | D CHAIN OF CUS        | TOD            | Y FC             | DRM                                                                                   |                         |          |             |                                            |          |          |             |            |            |  |
|---------------------------------------------------------------------|--------------|------------------------|----------------------|----------------------------------------------|----------|-----------------------|----------------|------------------|---------------------------------------------------------------------------------------|-------------------------|----------|-------------|--------------------------------------------|----------|----------|-------------|------------|------------|--|
| <u>TO:</u><br>ENVIROLAB S <sup>I</sup><br>12 ASHLEY ST<br>CHATSWOOD | REET         |                        |                      | JKE Job<br>Number:                           |          | E30596PT              |                |                  |                                                                                       |                         | FROM     |             |                                            | Înv      | iro      | nm          | ver        | nts        |  |
| P: (02) 991062<br>F: (02) 991062                                    |              |                        | Date Res<br>Required |                                              | 1        |                       |                |                  | REAR OF 115 WICKS ROAD<br>MACQUARIE PARK, NSW 2113<br>P: 02-9888 5000 F: 02-9888 5001 |                         |          |             |                                            |          |          |             |            |            |  |
| Attention: Aileen Page: 2 of 2                                      |              |                        |                      |                                              |          | 2 of 2                |                |                  |                                                                                       |                         |          | ntion:      | Lor@jk                                     |          | atrina   | Taylo       | or         |            |  |
| Location:                                                           | Cooma        |                        |                      | <u>.                                    </u> |          |                       |                |                  |                                                                                       | Sam                     | iple Pi  |             | red in I                                   |          |          |             |            |            |  |
| Sampler:                                                            | AD           |                        |                      |                                              |          |                       |                |                  |                                                                                       |                         | Т        | ests F      | lequir                                     | ≥d       |          |             | _          |            |  |
| Date<br>Sampled                                                     | Lab<br>Ref:  | Sample Number          | Depth (m)            | Sample<br>Container                          | PID      | Sample<br>Description | Combo 6        | Combo 3          | Asbestos (WA<br>500mL)                                                                | Asbestos<br>(Detection) | BTEX     |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          |              | SDUP2                  | -                    | G                                            | -        | Soil Duplicate        | X              | ¦                | Р                                                                                     | lease                   | sen      | d to        | Melb                                       | ourr     | ne En    | virola      | ıb.        |            |  |
| 17/11/2022 <b>7</b>                                                 | • <b>3</b> 8 | SDUP3                  | -                    | G                                            |          | Soil Duplicate        |                |                  |                                                                                       |                         |          |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          | 28           | SDUP4                  | _                    | G                                            | -        | Soil Duplicate        |                |                  |                                                                                       |                         |          |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          | 20           |                        | _                    | G                                            | -        | , Trip Blank          |                | X                |                                                                                       |                         |          |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          | 29           | TS-52                  |                      | v                                            | -        | Trip Spike            |                |                  |                                                                                       |                         | X        |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          |              | FR2-SHOVEL             |                      | #                                            | -        | Field Rinsate         |                | X                |                                                                                       | ŀ                       |          |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          | 31           | FCF1                   | Surface              | A                                            | _        | Fragment              |                |                  |                                                                                       | X                       |          |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          | 32           | FCF2                   | Surface              | A                                            | -        | Fragment              |                |                  |                                                                                       | X                       |          |             |                                            |          |          | -           |            |            |  |
| 17/11/2022                                                          | 33           | FCF3                   | Surface              | 'A                                           | -        | Fragment              |                |                  |                                                                                       |                         |          |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          |              | TP205-FCF1             | 0.1-0.6              | A                                            | _        | Fragment              |                |                  |                                                                                       | x                       |          |             |                                            |          |          |             |            |            |  |
| 17/11/2022                                                          | 35           | TP205-FCF2             | 1.0-1.5              | A                                            | -        | Fragment              |                |                  | 1                                                                                     | X                       |          |             | 1                                          |          |          |             |            |            |  |
| 17/11/2022                                                          | 1            | TP205-FCF3             | 1.0-1.5              | A                                            | -        | Fragment              |                |                  |                                                                                       | X                       |          |             |                                            |          | <u> </u> |             |            |            |  |
| 1771172022                                                          | - 200        |                        |                      |                                              |          |                       |                | 1                |                                                                                       |                         |          |             |                                            |          |          |             |            |            |  |
|                                                                     |              |                        |                      |                                              |          |                       |                |                  |                                                                                       |                         |          |             |                                            |          |          |             |            |            |  |
|                                                                     |              |                        |                      | 1                                            |          |                       |                |                  |                                                                                       |                         |          |             |                                            |          |          |             | <u> </u>   |            |  |
|                                                                     |              |                        |                      |                                              |          |                       |                |                  |                                                                                       |                         |          |             |                                            |          |          |             |            | ╉──┤       |  |
|                                                                     |              |                        |                      |                                              |          |                       |                |                  | 1                                                                                     |                         |          |             |                                            |          | -        |             |            |            |  |
|                                                                     |              |                        |                      |                                              |          |                       |                |                  | -                                                                                     |                         |          | $\vdash$    | -                                          |          | +        | <u> </u>    |            |            |  |
|                                                                     |              |                        |                      |                                              |          |                       |                |                  |                                                                                       |                         |          |             |                                            |          |          |             | •          | +          |  |
|                                                                     |              |                        | ł – –                | 1                                            |          |                       | +              | ╞                | $\vdash$                                                                              | -                       |          | ╞           | +                                          | $\vdash$ | +        |             |            | +          |  |
|                                                                     |              |                        |                      |                                              |          |                       |                | 1                | $\mathbf{I}$                                                                          | $\vdash$                | $\vdash$ | ╞           | +                                          |          |          | <u> </u>    | [          | <u> </u> . |  |
|                                                                     |              |                        |                      |                                              |          |                       |                | +                |                                                                                       |                         |          | ╞           | +                                          |          |          |             |            |            |  |
|                                                                     |              | <u> </u>               | <u> </u>             |                                              |          |                       |                | +                | +                                                                                     | +                       | +        | ╞           | +                                          | -        | -        |             | ╞          | ╀╌┤        |  |
|                                                                     |              |                        |                      |                                              |          | 1                     | +              | $\left  \right $ |                                                                                       | <u>+</u> —              |          | ┢           | +                                          | -        |          |             |            | $+\cdot$   |  |
|                                                                     |              |                        |                      | <u> </u>                                     |          |                       |                | $\left  \right $ |                                                                                       | $\vdash$                | $\vdash$ | +           | +                                          | +        | +        |             | ┝          | $\vdash$   |  |
| Remarks (co                                                         | ]<br>mment:  | <br>s/detection limits | l<br>required):      | 1                                            | <u>]</u> | <u> </u>              | G - 2<br>A - Z | 50mg<br>iplock   | ontain<br>Glass<br>Asbe                                                               | Jar<br>stos B           | ag       |             | lastic E                                   | _        | <u> </u> | <u>1</u>    | <u>  _</u> | <u> </u>   |  |
| Relinquished                                                        | l By: AD     | •                      |                      | Date: 18                                     | .11.22   |                       | # 2x<br>Time   |                  | r <u>g</u> las                                                                        | 5 <u>, 1X H</u>         | Rece     | eived<br>EC | <u>е, 2х В'</u><br>Ву:<br>МСИ<br><u>ПС</u> | , A      |          | Date<br>۱۶/ | /2<br>  /2 | 2          |  |

.

•

٩

# # 311057

2



#### Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 311057-A**

| Client Details |                                      |
|----------------|--------------------------------------|
| Client         | JK Environments                      |
| Attention      | Katrina Taylor                       |
| Address        | PO Box 976, North Ryde BC, NSW, 1670 |

| Sample Details                       |                     |
|--------------------------------------|---------------------|
| Your Reference                       | E30596PT, Cooma     |
| Number of Samples                    | additional analysis |
| Date samples received                | 18/11/2022          |
| Date completed instructions received | 25/11/2022          |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

| Report Details                   |                                                                      |
|----------------------------------|----------------------------------------------------------------------|
| Date results requested by        | 02/12/2022                                                           |
| Date of Issue                    | 02/12/2022                                                           |
| NATA Accreditation Number 29     | 01. This document shall not be reproduced except in full.            |
| Accredited for compliance with I | SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |

**Results Approved By** 

Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Liam Timmins, Organic Instruments Team Leader Loren Bardwell, Development Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 311057-A Revision No: R00



Page | 1 of 19

| vTRH(C6-C10)/BTEXN in Soil                           |       |            |            |            |             |             |
|------------------------------------------------------|-------|------------|------------|------------|-------------|-------------|
| Our Reference                                        |       | 311057-A-3 | 311057-A-8 | 311057-A-9 | 311057-A-14 | 311057-A-21 |
| Your Reference                                       | UNITS | TP201      | TP203      | TP203      | TP205       | TP207       |
| Depth                                                |       | 1.0-1.2    | 0.4-0.6    | 1.0-1.2    | 1.0-1.2     | 0.8-1.0     |
| Date Sampled                                         |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022  | 17/11/2022  |
| Type of sample                                       |       | Soil       | Soil       | Soil       | Soil        | Soil        |
| Date extracted                                       | -     | 28/11/2022 | 28/11/2022 | 28/11/2022 | 28/11/2022  | 28/11/2022  |
| Date analysed                                        | -     | 30/11/2022 | 30/11/2022 | 30/11/2022 | 30/11/2022  | 30/11/2022  |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        | <25        | <25        | <25         | <25         |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25        | <25        | <25        | <25         | <25         |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        | <25        | <25        | <25         | <25         |
| Benzene                                              | mg/kg | <0.2       | <0.2       | <0.2       | <0.2        | <0.2        |
| Toluene                                              | mg/kg | <0.5       | <0.5       | <0.5       | <0.5        | <0.5        |
| Ethylbenzene                                         | mg/kg | <1         | <1         | <1         | <1          | <1          |
| m+p-xylene                                           | mg/kg | <2         | <2         | <2         | <2          | <2          |
| o-Xylene                                             | mg/kg | <1         | <1         | <1         | <1          | <1          |
| Naphthalene                                          | mg/kg | <1         | <1         | <1         | <1          | <1          |
| Total +ve Xylenes                                    | mg/kg | <1         | <1         | <1         | <1          | <1          |
| Surrogate aaa-Trifluorotoluene                       | %     | 80         | 84         | 81         | 80          | 85          |

| vTRH(C6-C10)/BTEXN in Soil                           |       |             |
|------------------------------------------------------|-------|-------------|
| Our Reference                                        |       | 311057-A-24 |
| Your Reference                                       | UNITS | TP208       |
| Depth                                                |       | 0.6-0.8     |
| Date Sampled                                         |       | 17/11/2022  |
| Type of sample                                       |       | Soil        |
| Date extracted                                       | -     | 28/11/2022  |
| Date analysed                                        | -     | 30/11/2022  |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25         |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25         |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25         |
| Benzene                                              | mg/kg | <0.2        |
| Toluene                                              | mg/kg | <0.5        |
| Ethylbenzene                                         | mg/kg | <1          |
| m+p-xylene                                           | mg/kg | <2          |
| o-Xylene                                             | mg/kg | <1          |
| Naphthalene                                          | mg/kg | <1          |
| Total +ve Xylenes                                    | mg/kg | <1          |
| Surrogate aaa-Trifluorotoluene                       | %     | 83          |

| svTRH (C10-C40) in Soil                                      |       |            |            |            |             |             |
|--------------------------------------------------------------|-------|------------|------------|------------|-------------|-------------|
| Our Reference                                                |       | 311057-A-3 | 311057-A-8 | 311057-A-9 | 311057-A-14 | 311057-A-21 |
| Your Reference                                               | UNITS | TP201      | TP203      | TP203      | TP205       | TP207       |
| Depth                                                        |       | 1.0-1.2    | 0.4-0.6    | 1.0-1.2    | 1.0-1.2     | 0.8-1.0     |
| Date Sampled                                                 |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022  | 17/11/2022  |
| Type of sample                                               |       | Soil       | Soil       | Soil       | Soil        | Soil        |
| Date extracted                                               | -     | 28/11/2022 | 28/11/2022 | 28/11/2022 | 28/11/2022  | 28/11/2022  |
| Date analysed                                                | -     | 29/11/2022 | 29/11/2022 | 29/11/2022 | 29/11/2022  | 29/11/2022  |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50        | <50        | <50        | <50         | <50         |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | mg/kg | <100       | <100       | <100       | <100        | <100        |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | <100       | <100       | <100       | <100        | <100        |
| Total +ve TRH (C10-C36)                                      | mg/kg | <50        | <50        | <50        | <50         | <50         |
| TRH >C10 -C16                                                | mg/kg | <50        | <50        | <50        | <50         | <50         |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        | <50        | <50        | <50         | <50         |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | <100       | <100       | <100       | <100        | <100        |
| TRH >C <sub>34</sub> -C <sub>40</sub>                        | mg/kg | <100       | <100       | <100       | <100        | <100        |
| Total +ve TRH (>C10-C40)                                     | mg/kg | <50        | <50        | <50        | <50         | <50         |
| Surrogate o-Terphenyl                                        | %     | 87         | 80         | 81         | 81          | 84          |

| svTRH (C10-C40) in Soil                                      |       |             |
|--------------------------------------------------------------|-------|-------------|
| Our Reference                                                |       | 311057-A-24 |
| Your Reference                                               | UNITS | TP208       |
| Depth                                                        |       | 0.6-0.8     |
| Date Sampled                                                 |       | 17/11/2022  |
| Type of sample                                               |       | Soil        |
| Date extracted                                               | -     | 28/11/2022  |
| Date analysed                                                | -     | 29/11/2022  |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50         |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | mg/kg | <100        |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | <100        |
| Total +ve TRH (C10-C36)                                      | mg/kg | <50         |
| TRH >C <sub>10</sub> -C <sub>16</sub>                        | mg/kg | <50         |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50         |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | <100        |
| TRH >C <sub>34</sub> -C <sub>40</sub>                        | mg/kg | <100        |
| Total +ve TRH (>C10-C40)                                     | mg/kg | <50         |
| Surrogate o-Terphenyl                                        | %     | 82          |

| PAHs in Soil                   |       |            |            |            | _           |             |
|--------------------------------|-------|------------|------------|------------|-------------|-------------|
| Our Reference                  |       | 311057-A-3 | 311057-A-8 | 311057-A-9 | 311057-A-14 | 311057-A-21 |
| Your Reference                 | UNITS | TP201      | TP203      | TP203      | TP205       | TP207       |
| Depth                          |       | 1.0-1.2    | 0.4-0.6    | 1.0-1.2    | 1.0-1.2     | 0.8-1.0     |
| Date Sampled                   |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022  | 17/11/2022  |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil        | Soil        |
| Date extracted                 | -     | 28/11/2022 | 28/11/2022 | 28/11/2022 | 28/11/2022  | 28/11/2022  |
| Date analysed                  | -     | 02/12/2022 | 02/12/2022 | 02/12/2022 | 02/12/2022  | 02/12/2022  |
| Naphthalene                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Fluorene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Phenanthrene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Anthracene                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Fluoranthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Pyrene                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Benzo(a)anthracene             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Chrysene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2       | <0.2       | <0.2       | <0.2        | <0.2        |
| Benzo(a)pyrene                 | mg/kg | <0.05      | <0.05      | <0.05      | <0.05       | <0.05       |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Benzo(g,h,i)perylene           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        |
| Total +ve PAH's                | mg/kg | <0.05      | <0.05      | <0.05      | <0.05       | <0.05       |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       | <0.5       | <0.5        | <0.5        |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5        | <0.5        |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       | <0.5       | <0.5        | <0.5        |
| Surrogate p-Terphenyl-d14      | %     | 94         | 90         | 88         | 93          | 87          |

| PAHs in Soil                   |       |             |
|--------------------------------|-------|-------------|
| Our Reference                  |       | 311057-A-24 |
| Your Reference                 | UNITS | TP208       |
| Depth                          |       | 0.6-0.8     |
| Date Sampled                   |       | 17/11/2022  |
| Type of sample                 |       | Soil        |
| Date extracted                 | -     | 28/11/2022  |
| Date analysed                  | -     | 02/12/2022  |
| Naphthalene                    | mg/kg | <0.1        |
| Acenaphthylene                 | mg/kg | <0.1        |
| Acenaphthene                   | mg/kg | <0.1        |
| Fluorene                       | mg/kg | <0.1        |
| Phenanthrene                   | mg/kg | <0.1        |
| Anthracene                     | mg/kg | <0.1        |
| Fluoranthene                   | mg/kg | <0.1        |
| Pyrene                         | mg/kg | <0.1        |
| Benzo(a)anthracene             | mg/kg | <0.1        |
| Chrysene                       | mg/kg | <0.1        |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2        |
| Benzo(a)pyrene                 | mg/kg | <0.05       |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1        |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1        |
| Benzo(g,h,i)perylene           | mg/kg | <0.1        |
| Total +ve PAH's                | mg/kg | <0.05       |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5        |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5        |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5        |
| Surrogate p-Terphenyl-d14      | %     | 91          |

| Acid Extractable metals in soil |       |            |            |            |             |             |
|---------------------------------|-------|------------|------------|------------|-------------|-------------|
| Our Reference                   |       | 311057-A-3 | 311057-A-8 | 311057-A-9 | 311057-A-14 | 311057-A-21 |
| Your Reference                  | UNITS | TP201      | TP203      | TP203      | TP205       | TP207       |
| Depth                           |       | 1.0-1.2    | 0.4-0.6    | 1.0-1.2    | 1.0-1.2     | 0.8-1.0     |
| Date Sampled                    |       | 17/11/2022 | 17/11/2022 | 17/11/2022 | 17/11/2022  | 17/11/2022  |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil        | Soil        |
| Date prepared                   | -     | 28/11/2022 | 28/11/2022 | 28/11/2022 | 28/11/2022  | 28/11/2022  |
| Date analysed                   | -     | 30/11/2022 | 30/11/2022 | 30/11/2022 | 30/11/2022  | 30/11/2022  |
| Arsenic                         | mg/kg | <4         | <4         | <4         | <4          | <4          |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4       | <0.4        | <0.4        |
| Chromium                        | mg/kg | 42         | 35         | 65         | 39          | 38          |
| Copper                          | mg/kg | 22         | 59         | 33         | 17          | 18          |
| Lead                            | mg/kg | 14         | 24         | 13         | 17          | 8           |
| Mercury                         | mg/kg | 0.4        | 0.3        | 0.1        | 0.2         | <0.1        |
| Nickel                          | mg/kg | 18         | 16         | 31         | 18          | 17          |
| Zinc                            | mg/kg | 55         | 77         | 52         | 52          | 28          |

| Acid Extractable metals in soil |       |             |
|---------------------------------|-------|-------------|
| Our Reference                   |       | 311057-A-24 |
| Your Reference                  | UNITS | TP208       |
| Depth                           |       | 0.6-0.8     |
| Date Sampled                    |       | 17/11/2022  |
| Type of sample                  |       | Soil        |
| Date prepared                   | -     | 28/11/2022  |
| Date analysed                   | -     | 30/11/2022  |
| Arsenic                         | mg/kg | <4          |
| Cadmium                         | mg/kg | <0.4        |
| Chromium                        | mg/kg | 51          |
| Copper                          | mg/kg | 24          |
| Lead                            | mg/kg | 10          |
| Mercury                         | mg/kg | <0.1        |
| Nickel                          | mg/kg | 23          |
| Zinc                            | mg/kg | 39          |

|       | 311057-A-3 | 311057-A-8                                                                   | 311057-A-9                                                                                                                                                                                                                                  | 311057-A-14                                                                                                                                                                                                                                                                                                                                     | 311057-A-21                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNITS | TP201      | TP203                                                                        | TP203                                                                                                                                                                                                                                       | TP205                                                                                                                                                                                                                                                                                                                                           | TP207                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 1.0-1.2    | 0.4-0.6                                                                      | 1.0-1.2                                                                                                                                                                                                                                     | 1.0-1.2                                                                                                                                                                                                                                                                                                                                         | 0.8-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 17/11/2022 | 17/11/2022                                                                   | 17/11/2022                                                                                                                                                                                                                                  | 17/11/2022                                                                                                                                                                                                                                                                                                                                      | 17/11/2022                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Soil       | Soil                                                                         | Soil                                                                                                                                                                                                                                        | Soil                                                                                                                                                                                                                                                                                                                                            | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -     | 28/11/2022 | 28/11/2022                                                                   | 28/11/2022                                                                                                                                                                                                                                  | 28/11/2022                                                                                                                                                                                                                                                                                                                                      | 28/11/2022                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     | 29/11/2022 | 29/11/2022                                                                   | 29/11/2022                                                                                                                                                                                                                                  | 29/11/2022                                                                                                                                                                                                                                                                                                                                      | 29/11/2022                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| %     | 10         | 8.4                                                                          | 18                                                                                                                                                                                                                                          | 9.8                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | -          | UNITS TP201<br>1.0-1.2<br>17/11/2022<br>Soil<br>- 28/11/2022<br>- 29/11/2022 | UNITS         TP201         TP203           1.0-1.2         0.4-0.6           17/11/2022         17/11/2022           Soil         Soil           -         28/11/2022         28/11/2022           -         29/11/2022         29/11/2022 | UNITS         TP201         TP203         TP203           1.0-1.2         0.4-0.6         1.0-1.2           17/11/2022         17/11/2022         17/11/2022           Soil         Soil         Soil           -         28/11/2022         28/11/2022         28/11/2022           -         29/11/2022         29/11/2022         29/11/2022 | UNITS         TP201         TP203         TP203         TP205           1.0-1.2         0.4-0.6         1.0-1.2         1.0-1.2           17/11/2022         17/11/2022         17/11/2022         17/11/2022           Soil         Soil         Soil         Soil           -         28/11/2022         28/11/2022         28/11/2022         28/11/2022           -         29/11/2022         29/11/2022         29/11/2022         29/11/2022 |

| Moisture       |       |             |
|----------------|-------|-------------|
| Our Reference  |       | 311057-A-24 |
| Your Reference | UNITS | TP208       |
| Depth          |       | 0.6-0.8     |
| Date Sampled   |       | 17/11/2022  |
| Type of sample |       | Soil        |
| Date prepared  | -     | 28/11/2022  |
| Date analysed  | -     | 29/11/2022  |
| Moisture       | %     | 11          |

| CEC                      |          |            |
|--------------------------|----------|------------|
| Our Reference            |          | 311057-A-1 |
| Your Reference           | UNITS    | TP201      |
| Depth                    |          | 0-0.1      |
| Date Sampled             |          | 17/11/2022 |
| Type of sample           |          | Soil       |
| Date prepared            | -        | 02/12/2022 |
| Date analysed            | -        | 02/12/2022 |
| Exchangeable Ca          | meq/100g | 32         |
| Exchangeable K           | meq/100g | 1.6        |
| Exchangeable Mg          | meq/100g | 6.7        |
| Exchangeable Na          | meq/100g | <0.1       |
| Cation Exchange Capacity | meq/100g | 41         |

| Metals from Leaching Fluid pH 2.9 or 5 |          |            |
|----------------------------------------|----------|------------|
| Our Reference                          |          | 311057-A-1 |
| Your Reference                         | UNITS    | TP201      |
| Depth                                  |          | 0-0.1      |
| Date Sampled                           |          | 17/11/2022 |
| Type of sample                         |          | Soil       |
| Date extracted                         | -        | 02/12/2022 |
| Date analysed                          | -        | 02/12/2022 |
| pH of soil for fluid# determ.          | pH units | 7.5        |
| pH of soil TCLP (after HCl)            | pH units | 1.6        |
| Extraction fluid used                  |          | 1          |
| pH of final Leachate                   | pH units | 5.1        |
| Nickel                                 | mg/L     | <0.02      |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-004  | Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.                                                                                                                                                                                                                         |
|            | Please note that the mass used may be scaled down from default based on sample mass available.                                                                                                                                                                                                          |
|            | Samples are stored at 2-6oC before and after leachate preparation.                                                                                                                                                                                                                                      |
| Inorg-008  | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                         |
| Metals-020 | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                             |
| Metals-020 | Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.                                                                                            |
| Metals-020 | Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.                                                                                                                                                          |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                            |
| Org-020    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. |
| Org-020    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                         |
|            | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                    |
|            | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                            |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.<br>For soil results:-<br>1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql> |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.<br>Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| QUALITY CONT                         | QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil |     |         |            |      |      |      | Duplicate |            |      |
|--------------------------------------|---------------------------------------------|-----|---------|------------|------|------|------|-----------|------------|------|
| Test Description                     | Units                                       | PQL | Method  | Blank      | #    | Base | Dup. | RPD       | LCS-3      | [NT] |
| Date extracted                       | -                                           |     |         | 28/11/2022 | [NT] |      | [NT] | [NT]      | 28/11/2022 |      |
| Date analysed                        | -                                           |     |         | 30/11/2022 | [NT] |      | [NT] | [NT]      | 30/11/2022 |      |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg                                       | 25  | Org-023 | <25        | [NT] |      | [NT] | [NT]      | 98         |      |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg                                       | 25  | Org-023 | <25        | [NT] |      | [NT] | [NT]      | 98         |      |
| Benzene                              | mg/kg                                       | 0.2 | Org-023 | <0.2       | [NT] |      | [NT] | [NT]      | 97         |      |
| Toluene                              | mg/kg                                       | 0.5 | Org-023 | <0.5       | [NT] |      | [NT] | [NT]      | 93         |      |
| Ethylbenzene                         | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT] | [NT]      | 94         |      |
| m+p-xylene                           | mg/kg                                       | 2   | Org-023 | <2         | [NT] |      | [NT] | [NT]      | 104        |      |
| o-Xylene                             | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT] | [NT]      | 103        |      |
| Naphthalene                          | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT] | [NT]      | [NT]       |      |
| Surrogate aaa-Trifluorotoluene       | %                                           |     | Org-023 | 81         | [NT] |      | [NT] | [NT]      | 87         |      |

| QUALITY CO                            | QUALITY CONTROL: svTRH (C10-C40) in Soil |     |         |            |      |      |      |      | Spike Recovery % |      |
|---------------------------------------|------------------------------------------|-----|---------|------------|------|------|------|------|------------------|------|
| Test Description                      | Units                                    | PQL | Method  | Blank      | #    | Base | Dup. | RPD  | LCS-3            | [NT] |
| Date extracted                        | -                                        |     |         | 28/11/2022 | [NT] |      | [NT] | [NT] | 28/11/2022       |      |
| Date analysed                         | -                                        |     |         | 28/11/2022 | [NT] |      | [NT] | [NT] | 28/11/2022       |      |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg                                    | 50  | Org-020 | <50        | [NT] |      | [NT] | [NT] | 110              |      |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 88               |      |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 114              |      |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg                                    | 50  | Org-020 | <50        | [NT] |      | [NT] | [NT] | 110              |      |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 88               |      |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 114              |      |
| Surrogate o-Terphenyl                 | %                                        |     | Org-020 | 86         | [NT] |      | [NT] | [NT] | 85               |      |

| QUAL                      | ITY CONTRC | L: PAHs | in Soil     |            |      | Duplicate |      |      | Spike Recovery % |      |  |
|---------------------------|------------|---------|-------------|------------|------|-----------|------|------|------------------|------|--|
| Test Description          | Units      | PQL     | Method      | Blank      | #    | Base      | Dup. | RPD  | LCS-3            | [NT] |  |
| Date extracted            | -          |         |             | 28/11/2022 | [NT] |           | [NT] | [NT] | 28/11/2022       |      |  |
| Date analysed             | -          |         |             | 02/12/2022 | [NT] |           | [NT] | [NT] | 02/12/2022       |      |  |
| Naphthalene               | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | 95               |      |  |
| Acenaphthylene            | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Acenaphthene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | 91               |      |  |
| Fluorene                  | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | 95               |      |  |
| Phenanthrene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | 102              |      |  |
| Anthracene                | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Fluoranthene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | 96               |      |  |
| Pyrene                    | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | 105              |      |  |
| Benzo(a)anthracene        | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Chrysene                  | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | 71               |      |  |
| Benzo(b,j+k)fluoranthene  | mg/kg      | 0.2     | Org-022/025 | <0.2       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Benzo(a)pyrene            | mg/kg      | 0.05    | Org-022/025 | <0.05      | [NT] |           | [NT] | [NT] | 66               |      |  |
| Indeno(1,2,3-c,d)pyrene   | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Dibenzo(a,h)anthracene    | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Benzo(g,h,i)perylene      | mg/kg      | 0.1     | Org-022/025 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Surrogate p-Terphenyl-d14 | %          |         | Org-022/025 | 97         | [NT] |           | [NT] | [NT] | 94               |      |  |

| QUALITY CONT     | QUALITY CONTROL: Acid Extractable metals in soil |     |            |            |      |      |      |      | Spike Recovery % |      |
|------------------|--------------------------------------------------|-----|------------|------------|------|------|------|------|------------------|------|
| Test Description | Units                                            | PQL | Method     | Blank      | #    | Base | Dup. | RPD  | LCS-1            | [NT] |
| Date prepared    | -                                                |     |            | 28/11/2022 | [NT] |      | [NT] | [NT] | 28/11/2022       |      |
| Date analysed    | -                                                |     |            | 30/11/2022 | [NT] |      | [NT] | [NT] | 30/11/2022       |      |
| Arsenic          | mg/kg                                            | 4   | Metals-020 | <4         | [NT] |      | [NT] | [NT] | 98               |      |
| Cadmium          | mg/kg                                            | 0.4 | Metals-020 | <0.4       | [NT] |      | [NT] | [NT] | 95               |      |
| Chromium         | mg/kg                                            | 1   | Metals-020 | <1         | [NT] |      | [NT] | [NT] | 97               |      |
| Copper           | mg/kg                                            | 1   | Metals-020 | <1         | [NT] |      | [NT] | [NT] | 97               |      |
| Lead             | mg/kg                                            | 1   | Metals-020 | <1         | [NT] |      | [NT] | [NT] | 99               |      |
| Mercury          | mg/kg                                            | 0.1 | Metals-021 | <0.1       | [NT] |      | [NT] | [NT] | 106              |      |
| Nickel           | mg/kg                                            | 1   | Metals-020 | <1         | [NT] |      | [NT] | [NT] | 97               |      |
| Zinc             | mg/kg                                            | 1   | Metals-020 | <1         | [NT] |      | [NT] | [NT] | 95               |      |

| QU.              | ALITY CONT | ROL: CE | C          |            |   | Du         | plicate    |     | Spike Re   | covery % |
|------------------|------------|---------|------------|------------|---|------------|------------|-----|------------|----------|
| Test Description | Units      | PQL     | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-3      | [NT]     |
| Date prepared    | -          |         |            | 02/12/2022 | 1 | 02/12/2022 | 02/12/2022 |     | 02/12/2022 | [NT]     |
| Date analysed    | -          |         |            | 02/12/2022 | 1 | 02/12/2022 | 02/12/2022 |     | 02/12/2022 | [NT]     |
| Exchangeable Ca  | meq/100g   | 0.1     | Metals-020 | <0.1       | 1 | 32         | 35         | 9   | 110        | [NT]     |
| Exchangeable K   | meq/100g   | 0.1     | Metals-020 | <0.1       | 1 | 1.6        | 1.6        | 0   | 104        | [NT]     |
| Exchangeable Mg  | meq/100g   | 0.1     | Metals-020 | <0.1       | 1 | 6.7        | 6.5        | 3   | 104        | [NT]     |
| Exchangeable Na  | meq/100g   | 0.1     | Metals-020 | <0.1       | 1 | <0.1       | <0.1       | 0   | 114        | [NT]     |

| QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5 |       |      |            |            |      | Du   | Spike Recovery % |      |            |      |
|---------------------------------------------------------|-------|------|------------|------------|------|------|------------------|------|------------|------|
| Test Description                                        | Units | PQL  | Method     | Blank      | #    | Base | Dup.             | RPD  | LCS-W1     | [NT] |
| Date extracted                                          | -     |      |            | 02/12/2022 | [NT] |      | [NT]             | [NT] | 02/12/2022 |      |
| Date analysed                                           | -     |      |            | 02/12/2022 | [NT] |      | [NT]             | [NT] | 02/12/2022 |      |
| Nickel                                                  | mg/L  | 0.02 | Metals-020 | <0.02      | [NT] | [NT] | [NT]             | [NT] | 93         | [NT] |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

## SAMPLE RECEIPT ADVICE

| Client Details |                 |
|----------------|-----------------|
| Client         | JK Environments |
| Attention      | Katrina Taylor  |

| Sample Login Details                 |                 |  |
|--------------------------------------|-----------------|--|
| Your reference                       | E30596PT, Cooma |  |
| Envirolab Reference                  | 311057-A        |  |
| Date Sample Received                 | 18/11/2022      |  |
| Date Instructions Received           | 25/11/2022      |  |
| Date Results Expected to be Reported | 02/12/2022      |  |

| Sample Condition                                       |                     |
|--------------------------------------------------------|---------------------|
| Samples received in appropriate condition for analysis | Yes                 |
| No. of Samples Provided                                | additional analysis |
| Turnaround Time Requested                              | Standard            |
| Temperature on Receipt (°C)                            | 12                  |
| Cooling Method                                         | Ice Pack            |
| Sampling Date Provided                                 | YES                 |

Comments Nil

Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



| Envirolab | Services | Pty Ltd |
|-----------|----------|---------|
|-----------|----------|---------|

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID     | VTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | Acid Extractable metalsin soil | CEC | pH of soil for fluid#determ. | pH of soil TCLP (after HCI) | Extraction fluid used | pH of final Leachate | Nickel | On Hold      |
|---------------|----------------------------|-------------------------|--------------|--------------------------------|-----|------------------------------|-----------------------------|-----------------------|----------------------|--------|--------------|
| TP201-0-0.1   |                            |                         |              |                                | ✓   | ✓                            | ✓                           | ✓                     | √                    | ✓      |              |
| TP201-0.5-0.6 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP201-1.0-1.2 | ✓                          | ✓                       | ✓            | ✓                              |     |                              |                             |                       |                      |        |              |
| TP202-0-0.1   |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP202-0.5-0.6 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP202-0.8-1.0 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP203-0-0.1   |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP203-0.4-0.6 | ✓                          | ✓                       | ✓            | ✓                              |     |                              |                             |                       |                      |        |              |
| TP203-1.0-1.2 | ✓                          | ✓                       | $\checkmark$ | ✓                              |     |                              |                             |                       |                      |        |              |
| TP204-0-0.1   |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP204-0.6-0.8 |                            |                         |              |                                |     |                              |                             |                       |                      |        | ✓            |
| TP205-0-0.1   |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP205-0.4-0.5 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP205-1.0-1.2 | $\checkmark$               | $\checkmark$            | $\checkmark$ | $\checkmark$                   |     |                              |                             |                       |                      |        |              |
| TP205-1.5-1.6 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP206-0-0.1   |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP206-0.5-0.7 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP206-0.7-0.9 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP207-0-0.1   |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP207-0.2-0.4 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP207-0.8-1.0 | $\checkmark$               | ✓                       | $\checkmark$ | $\checkmark$                   |     |                              |                             |                       |                      |        |              |
| TP208-0-0.1   |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP208-0.2-0.4 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP208-0.6-0.8 | ✓                          | $\checkmark$            | $\checkmark$ | $\checkmark$                   |     |                              |                             |                       |                      |        |              |
| SDUP1         |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| SDUP3         |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| SDUP4         |                            |                         |              |                                |     |                              |                             |                       |                      |        | ✓            |
| TB-S2         |                            |                         |              |                                |     |                              |                             |                       |                      |        | ✓            |
| TS-S2         |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| FR2-SHOVEL    |                            |                         |              |                                |     |                              |                             |                       |                      |        | ✓            |
| FCF1-Surface  |                            |                         |              |                                |     |                              |                             |                       |                      |        | ✓            |
| FCF2-Surface  |                            |                         |              |                                |     |                              |                             |                       |                      |        | ✓            |



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID          | vTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | Acid Extractable metalsin soil | CEC | pH of soil for fluid#determ. | pH of soil TCLP (after HCI) | Extraction fluid used | pH of final Leachate | Nickel | On Hold      |
|--------------------|----------------------------|-------------------------|--------------|--------------------------------|-----|------------------------------|-----------------------------|-----------------------|----------------------|--------|--------------|
| FCF3-Surface       |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP205-FCF1-0.1-0.6 |                            |                         |              |                                |     |                              |                             |                       |                      |        | ✓            |
| TP205-FCF2-1.0-1.5 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |
| TP205-FCF3-1.0-1.5 |                            |                         |              |                                |     |                              |                             |                       |                      |        | $\checkmark$ |

The ' $\checkmark$ ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

#### Ming To

| From:        | Katrina Taylor <ktaylor@jkenvironments.com.au></ktaylor@jkenvironments.com.au>   |
|--------------|----------------------------------------------------------------------------------|
| Sent:        | Friday, 25 November 2022 4:45 PM                                                 |
| То:          | Samplereceipt                                                                    |
| Subject:     | FW: Results for Registration 311057 E30596PT, Cooma                              |
| Attachments: | 311057-[R00].pdf; 311057-COC.pdf; JK Environment Soil for Envirolab 311057.xlsx; |
|              | 311057.Excel.xlsx                                                                |

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Ref: 311057-A 7A7: Stanclard. Dre: 02/12/2022

- --

Afternoon,

Please schedule the following samples on standard TA:

#3

TP201 (1.0-1.2) TP203 (0.4-0.6) TP203 (1.0-1.2) TP205 (1.0-1.2) TP207 (0.8-1.0) 24 TP208 (06-0.8) 24

CEC

TP201 (0-0.1) {.

TCLP Nickel TP201 (0-0.1) <sup>(</sup> ·

Thank you!

Regards Katrina Taylor Associate | Environmental Scientist NSW Licensed Asbestos Assessor



T: +612 9888 5000 D: 0418 481 628 E: <u>KTaylor@ikenvironments.com.au</u> www.jkenvironments.com.au PO Box 976 NORTH RYDE BC NSW 1670 115 Wicks Road MACQUARIE PARK NSW 2113

## **JK**Environments

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discretance between paper and electronic versions the paper version is to take precedence.

From: Nancy Zhang <NZhang@envirolab.com.au> Sent: Friday, 25 November 2022 3:33 PM To: Katrina Taylor <KTaylor@jkenvironments.com.au> Subject: Results for Registration 311057 E30596PT, Cooma

This message originated outside the JKG network. If this looks to be from a staff member, it is likely to be malicious (spam/phish attack). Do not click links of open attachments unless you recognise the sender and know the content is safe.



#### Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 34681**

| Client Details |                                      |
|----------------|--------------------------------------|
| Client         | JK Environments                      |
| Attention      | Katrina Taylor                       |
| Address        | PO Box 976, North Ryde BC, NSW, 1670 |

| Sample Details                       |                 |
|--------------------------------------|-----------------|
| Your Reference                       | <u>E30596PT</u> |
| Number of Samples                    | 1 Soil          |
| Date samples received                | 22/11/2022      |
| Date completed instructions received | 22/11/2022      |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

| Report Details                                                                        |                                                                      |  |  |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| Date results requested by                                                             | 28/11/2022                                                           |  |  |  |  |
| Date of Issue                                                                         | 28/11/2022                                                           |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                      |  |  |  |  |
| Accredited for compliance with                                                        | SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |

Results Approved By Tara White, Metals Team Leader Tianna Milburn, Chemist

#### Authorised By

Pamela Adams, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Soil                          |       |            |
|-----------------------------------------------------|-------|------------|
| Our Reference                                       |       | 34681-1    |
| Your Reference                                      | UNITS | SDUP2      |
| Date Sampled                                        |       | 17/11/2022 |
| Type of sample                                      |       | Soil       |
| Date extracted                                      | -     | 24/11/2022 |
| Date analysed                                       | -     | 24/11/2022 |
| vTRH C <sub>6</sub> - C <sub>9</sub>                | mg/kg | <25        |
| vTRH C6 - C10                                       | mg/kg | <25        |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        |
| Benzene                                             | mg/kg | <0.2       |
| Toluene                                             | mg/kg | <0.5       |
| Ethylbenzene                                        | mg/kg | <1         |
| m+p-xylene                                          | mg/kg | <2         |
| o-Xylene                                            | mg/kg | <1         |
| Naphthalene                                         | mg/kg | <1         |
| Total BTEX                                          | mg/kg | <1         |
| Total +ve Xylenes                                   | mg/kg | <1         |
| Surrogate aaa-Trifluorotoluene                      | %     | 92         |

| TRH Soil C10-C40 NEPM                                        |       |            |
|--------------------------------------------------------------|-------|------------|
| Our Reference                                                |       | 34681-1    |
| Your Reference                                               | UNITS | SDUP2      |
| Date Sampled                                                 |       | 17/11/2022 |
| Type of sample                                               |       | Soil       |
| Date extracted                                               | -     | 24/11/2022 |
| Date analysed                                                | -     | 25/11/2022 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | mg/kg | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | 210        |
| Total +ve TRH (C10-C36)                                      | mg/kg | 210        |
| TRH >C10 -C16                                                | mg/kg | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | 200        |
| TRH >C <sub>34</sub> -C <sub>40</sub>                        | mg/kg | 150        |
| Total +ve TRH (>C10-C40)                                     | mg/kg | 350        |
| Surrogate o-Terphenyl                                        | %     | 77         |

| PAHs in Soil                          |       |            |
|---------------------------------------|-------|------------|
| Our Reference                         |       | 34681-1    |
| Your Reference                        | UNITS | SDUP2      |
| Date Sampled                          |       | 17/11/2022 |
| Type of sample                        |       | Soil       |
| Date extracted                        | -     | 24/11/2022 |
| Date analysed                         | -     | 25/11/2022 |
| Naphthalene                           | mg/kg | <0.1       |
| Acenaphthylene                        | mg/kg | <0.1       |
| Acenaphthene                          | mg/kg | <0.1       |
| Fluorene                              | mg/kg | <0.1       |
| Phenanthrene                          | mg/kg | <0.1       |
| Anthracene                            | mg/kg | <0.1       |
| Fluoranthene                          | mg/kg | <0.1       |
| Pyrene                                | mg/kg | <0.1       |
| Benzo(a)anthracene                    | mg/kg | <0.1       |
| Chrysene                              | mg/kg | <0.1       |
| Benzo(b,j&k)fluoranthene              | mg/kg | <0.2       |
| Benzo(a)pyrene                        | mg/kg | <0.05      |
| Indeno(1,2,3-c,d)pyrene               | mg/kg | <0.1       |
| Dibenzo(a,h)anthracene                | mg/kg | <0.1       |
| Benzo(g,h,i)perylene                  | mg/kg | <0.1       |
| Total +ve PAH's                       | mg/kg | <0.05      |
| Benzo(a)pyrene TEQ calc (Zero)        | mg/kg | <0.5       |
| Benzo(a)pyrene TEQ calc (Half)        | mg/kg | <0.5       |
| Benzo(a)pyrene TEQ calc (PQL)         | mg/kg | <0.5       |
| Surrogate p-Terphenyl-d <sub>14</sub> | %     | 84         |

| OCP in Soil                          |       |            |
|--------------------------------------|-------|------------|
| Our Reference                        |       | 34681-1    |
| Your Reference                       | UNITS | SDUP2      |
| Date Sampled                         |       | 17/11/2022 |
| Type of sample                       |       | Soil       |
| Date extracted                       | -     | 24/11/2022 |
| Date analysed                        | -     | 25/11/2022 |
| alpha-BHC                            | mg/kg | <0.1       |
| Hexachlorobenzene                    | mg/kg | <0.1       |
| beta-BHC                             | mg/kg | <0.1       |
| gamma-BHC                            | mg/kg | <0.1       |
| Heptachlor                           | mg/kg | <0.1       |
| delta-BHC                            | mg/kg | <0.1       |
| Aldrin                               | mg/kg | <0.1       |
| Heptachlor Epoxide                   | mg/kg | <0.1       |
| gamma-Chlordane                      | mg/kg | <0.1       |
| alpha-chlordane                      | mg/kg | <0.1       |
| Endosulfan I                         | mg/kg | <0.1       |
| pp-DDE                               | mg/kg | <0.1       |
| Dieldrin                             | mg/kg | <0.1       |
| Endrin                               | mg/kg | <0.1       |
| Endosulfan II                        | mg/kg | <0.1       |
| pp-DDD                               | mg/kg | <0.1       |
| Endrin Aldehyde                      | mg/kg | <0.1       |
| pp-DDT                               | mg/kg | <0.1       |
| Endosulfan Sulphate                  | mg/kg | <0.1       |
| Methoxychlor                         | mg/kg | <0.1       |
| Total +ve reported Aldrin + Dieldrin | mg/kg | <0.1       |
| Total +ve reported DDT+DDD+DDE       | mg/kg | <0.1       |
| Surrogate 2-chlorophenol-d4          | %     | 82         |

| OP in Soil                  |       |            |
|-----------------------------|-------|------------|
| Our Reference               |       | 34681-1    |
| Your Reference              | UNITS | SDUP2      |
| Date Sampled                |       | 17/11/2022 |
| Type of sample              |       | Soil       |
| Date extracted              | -     | 24/11/2022 |
| Date analysed               | -     | 25/11/2022 |
| Azinphos-methyl             | mg/kg | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       |
| Chlorpyrifos                | mg/kg | <0.1       |
| Chlorpyrifos-methyl         | mg/kg | <0.1       |
| Diazinon                    | mg/kg | <0.1       |
| Dichlorovos                 | mg/kg | <0.1       |
| Dimethoate                  | mg/kg | <0.1       |
| Ethion                      | mg/kg | <0.1       |
| Fenitrothion                | mg/kg | <0.1       |
| Malathion                   | mg/kg | <0.1       |
| Parathion                   | mg/kg | <0.1       |
| Ronnel                      | mg/kg | <0.1       |
| Surrogate 2-chlorophenol-d4 | %     | 82         |

| PCBs in Soil               |       |            |
|----------------------------|-------|------------|
| Our Reference              |       | 34681-1    |
| Your Reference             | UNITS | SDUP2      |
| Date Sampled               |       | 17/11/2022 |
| Type of sample             |       | Soil       |
| Date extracted             | -     | 24/11/2022 |
| Date analysed              | -     | 25/11/2022 |
| Aroclor 1016               | mg/kg | <0.1       |
| Aroclor 1221               | mg/kg | <0.1       |
| Aroclor 1232               | mg/kg | <0.1       |
| Aroclor 1242               | mg/kg | <0.1       |
| Aroclor 1248               | mg/kg | <0.1       |
| Aroclor 1254               | mg/kg | <0.1       |
| Aroclor 1260               | mg/kg | <0.1       |
| Total +ve PCBs (1016-1260) | mg/kg | <0.1       |
| Surrogate 2-fluorobiphenyl | %     | 86         |

| Acid Extractable metals in soil |       |            |
|---------------------------------|-------|------------|
| Our Reference                   |       | 34681-1    |
| Your Reference                  | UNITS | SDUP2      |
| Date Sampled                    |       | 17/11/2022 |
| Type of sample                  |       | Soil       |
| Date digested                   | -     | 25/11/2022 |
| Date analysed                   | -     | 26/11/2022 |
| Arsenic                         | mg/kg | <4         |
| Cadmium                         | mg/kg | <0.4       |
| Chromium                        | mg/kg | 53         |
| Copper                          | mg/kg | 37         |
| Lead                            | mg/kg | 60         |
| Mercury                         | mg/kg | 0.1        |
| Nickel                          | mg/kg | 59         |
| Zinc                            | mg/kg | 86         |

| Moisture       |       |            |
|----------------|-------|------------|
| Our Reference  |       | 34681-1    |
| Your Reference | UNITS | SDUP2      |
| Date Sampled   |       | 17/11/2022 |
| Type of sample |       | Soil       |
| Date prepared  | -     | 24/11/2022 |
| Date analysed  | -     | 25/11/2022 |
| Moisture       | %     | 13         |

| Method ID          | Methodology Summary                                                                                                                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008          | Moisture content determined by heating at 105°C for a minimum of 12 hours.                                                                                                           |
|                    |                                                                                                                                                                                      |
| Metals-020 ICP-AES | Determination of various metals by ICP-AES.                                                                                                                                          |
| Metals-021 CV-AAS  | Determination of Mercury by Cold Vapour AAS.                                                                                                                                         |
| Org-020            | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                      |
|                    | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. |
|                    | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).         |
| Org-021/022        | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD or GC-MS.                                                             |
|                    | Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.                           |
| Org-022            | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                                       |
| Org-022            | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                                       |
|                    | Note, For OCs the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.       |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-022   | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | For soil results:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | <ol> <li>'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> <li>'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> <li>'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> <li>Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.</li> </pql></li></pql></li></pql></li></ol> |
| Org-022   | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Org-023   | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Org-023   | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.<br>Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| QUALITY CON                           | QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil |     |         |            |      |      |      | Duplicate |            |      |  |  |
|---------------------------------------|---------------------------------------------|-----|---------|------------|------|------|------|-----------|------------|------|--|--|
| Test Description                      | Units                                       | PQL | Method  | Blank      | #    | Base | Dup. | RPD       | LCS-1      | [NT] |  |  |
| Date extracted                        | -                                           |     |         | 24/11/2022 | [NT] |      | [NT] | [NT]      | 24/11/2022 |      |  |  |
| Date analysed                         | -                                           |     |         | 24/11/2022 | [NT] |      | [NT] | [NT]      | 24/11/2022 |      |  |  |
| vTRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg                                       | 25  | Org-023 | <25        | [NT] |      | [NT] | [NT]      | 100        |      |  |  |
| vTRH C <sub>6</sub> - C <sub>10</sub> | mg/kg                                       | 25  | Org-023 | <25        | [NT] |      | [NT] | [NT]      | 100        |      |  |  |
| Benzene                               | mg/kg                                       | 0.2 | Org-023 | <0.2       | [NT] |      | [NT] | [NT]      | 91         |      |  |  |
| Toluene                               | mg/kg                                       | 0.5 | Org-023 | <0.5       | [NT] |      | [NT] | [NT]      | 103        |      |  |  |
| Ethylbenzene                          | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT] | [NT]      | 100        |      |  |  |
| m+p-xylene                            | mg/kg                                       | 2   | Org-023 | <2         | [NT] |      | [NT] | [NT]      | 104        |      |  |  |
| o-Xylene                              | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT] | [NT]      | 96         |      |  |  |
| Naphthalene                           | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT] | [NT]      | [NT]       |      |  |  |
| Surrogate aaa-Trifluorotoluene        | %                                           |     | Org-023 | 103        | [NT] |      | [NT] | [NT]      | 101        |      |  |  |

| QUALITY CO                            | NTROL: TRH | I Soil C10 | -C40 NEPM |            |   | Du         |            | Spike Recovery % |            |      |
|---------------------------------------|------------|------------|-----------|------------|---|------------|------------|------------------|------------|------|
| Test Description                      | Units      | PQL        | Method    | Blank      | # | Base       | Dup.       | RPD              | LCS-1      | [NT] |
| Date extracted                        | -          |            |           | 24/11/2022 | 1 | 24/11/2022 | 24/11/2022 |                  | 24/11/2022 |      |
| Date analysed                         | -          |            |           | 25/11/2022 | 1 | 25/11/2022 | 25/11/2022 |                  | 25/11/2022 |      |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg      | 50         | Org-020   | <50        | 1 | <50        | <50        | 0                | 93         |      |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg      | 100        | Org-020   | <100       | 1 | <100       | <100       | 0                | 93         |      |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg      | 100        | Org-020   | <100       | 1 | 210        | 240        | 13               | 93         |      |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg      | 50         | Org-020   | <50        | 1 | <50        | <50        | 0                | 93         |      |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg      | 100        | Org-020   | <100       | 1 | 200        | 210        | 5                | 93         |      |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg      | 100        | Org-020   | <100       | 1 | 150        | 170        | 12               | 93         |      |
| Surrogate o-Terphenyl                 | %          |            | Org-020   | 79         | 1 | 77         | 77         | 0                | 73         |      |

| QUALI                                 | TY CONTRC | L: PAHs | in Soil |            |      | Duplicate |      |      | Spike Recovery % |      |  |
|---------------------------------------|-----------|---------|---------|------------|------|-----------|------|------|------------------|------|--|
| Test Description                      | Units     | PQL     | Method  | Blank      | #    | Base      | Dup. | RPD  | LCS-1            | [NT] |  |
| Date extracted                        | -         |         |         | 24/11/2022 | [NT] |           | [NT] | [NT] | 24/11/2022       |      |  |
| Date analysed                         | -         |         |         | 25/11/2022 | [NT] |           | [NT] | [NT] | 25/11/2022       |      |  |
| Naphthalene                           | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | 98               |      |  |
| Acenaphthylene                        | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Acenaphthene                          | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | 100              |      |  |
| Fluorene                              | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | 98               |      |  |
| Phenanthrene                          | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | 104              |      |  |
| Anthracene                            | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Fluoranthene                          | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | 104              |      |  |
| Pyrene                                | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | 104              |      |  |
| Benzo(a)anthracene                    | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Chrysene                              | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | 92               |      |  |
| Benzo(b,j&k)fluoranthene              | mg/kg     | 0.2     | Org-022 | <0.2       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Benzo(a)pyrene                        | mg/kg     | 0.05    | Org-022 | <0.05      | [NT] |           | [NT] | [NT] | 88               |      |  |
| Indeno(1,2,3-c,d)pyrene               | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Dibenzo(a,h)anthracene                | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Benzo(g,h,i)perylene                  | mg/kg     | 0.1     | Org-022 | <0.1       | [NT] |           | [NT] | [NT] | [NT]             |      |  |
| Surrogate p-Terphenyl-d <sub>14</sub> | %         |         | Org-022 | 86         | [NT] |           | [NT] | [NT] | 92               |      |  |

| QUALI                       | TY CONTRO | )L: OCP i | n Soil  |            |   | Du         | plicate    |     | Spike Recovery % |            |  |
|-----------------------------|-----------|-----------|---------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description            | Units     | PQL       | Method  | Blank      | # | Base       | Dup.       | RPD | LCS-1            | 34681-1    |  |
| Date extracted              | -         |           |         | 24/11/2022 | 1 | 24/11/2022 | 24/11/2022 |     | 24/11/2022       | 24/11/2022 |  |
| Date analysed               | -         |           |         | 25/11/2022 | 1 | 25/11/2022 | 25/11/2022 |     | 25/11/2022       | 25/11/2022 |  |
| alpha-BHC                   | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 82               | 95         |  |
| Hexachlorobenzene           | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| beta-BHC                    | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 80               | 87         |  |
| gamma-BHC                   | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Heptachlor                  | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 80               | 90         |  |
| delta-BHC                   | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Aldrin                      | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 94               | 101        |  |
| Heptachlor Epoxide          | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 78               | 94         |  |
| gamma-Chlordane             | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 78               | 91         |  |
| alpha-chlordane             | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Endosulfan I                | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| pp-DDE                      | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 96               | 98         |  |
| Dieldrin                    | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 78               | 95         |  |
| Endrin                      | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Endosulfan II               | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| pp-DDD                      | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 104              | 114        |  |
| Endrin Aldehyde             | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| pp-DDT                      | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Endosulfan Sulphate         | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 76               | 86         |  |
| Methoxychlor                | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Surrogate 2-chlorophenol-d4 | %         |           | Org-022 | 82         | 1 | 82         | 84         | 2   | 84               | 86         |  |

| QUAL                        | ITY CONTR | OL: OP ir | n Soil  | Duplicate  |   |            |            |     | Spike Recovery % |            |  |  |
|-----------------------------|-----------|-----------|---------|------------|---|------------|------------|-----|------------------|------------|--|--|
| Test Description            | Units     | PQL       | Method  | Blank      | # | Base       | Dup.       | RPD | LCS-1            | 34681-1    |  |  |
| Date extracted              | -         |           |         | 24/11/2022 | 1 | 24/11/2022 | 24/11/2022 |     | 24/11/2022       | 24/11/2022 |  |  |
| Date analysed               | -         |           |         | 25/11/2022 | 1 | 25/11/2022 | 25/11/2022 |     | 25/11/2022       | 25/11/2022 |  |  |
| Azinphos-methyl             | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |  |
| Bromophos-ethyl             | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |  |
| Chlorpyrifos                | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 78               | 90         |  |  |
| Chlorpyrifos-methyl         | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 86               | 91         |  |  |
| Diazinon                    | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 98               | 108        |  |  |
| Dichlorovos                 | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |  |
| Dimethoate                  | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |  |
| Ethion                      | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 90               | 131        |  |  |
| Fenitrothion                | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | 74               | 110        |  |  |
| Malathion                   | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |  |
| Parathion                   | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |  |
| Ronnel                      | mg/kg     | 0.1       | Org-022 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |  |
| Surrogate 2-chlorophenol-d4 | %         |           | Org-022 | 82         | 1 | 82         | 84         | 2   | 84               | 86         |  |  |

| QUALIT                     | Y CONTRO | L: PCBs | in Soil |            |      | Du   |      | Spike Recovery % |            |      |
|----------------------------|----------|---------|---------|------------|------|------|------|------------------|------------|------|
| Test Description           | Units    | PQL     | Method  | Blank      | #    | Base | Dup. | RPD              | LCS-1      | [NT] |
| Date extracted             | -        |         |         | 24/11/2022 | [NT] |      | [NT] | [NT]             | 24/11/2022 |      |
| Date analysed              | -        |         |         | 25/11/2022 | [NT] |      | [NT] | [NT]             | 25/11/2022 |      |
| Aroclor 1016               | mg/kg    | 0.1     | Org-022 | <0.1       | [NT] |      | [NT] | [NT]             | [NT]       |      |
| Aroclor 1221               | mg/kg    | 0.1     | Org-022 | <0.1       | [NT] |      | [NT] | [NT]             | [NT]       |      |
| Aroclor 1232               | mg/kg    | 0.1     | Org-022 | <0.1       | [NT] |      | [NT] | [NT]             | [NT]       |      |
| Aroclor 1242               | mg/kg    | 0.1     | Org-022 | <0.1       | [NT] |      | [NT] | [NT]             | [NT]       |      |
| Aroclor 1248               | mg/kg    | 0.1     | Org-022 | <0.1       | [NT] |      | [NT] | [NT]             | [NT]       |      |
| Aroclor 1254               | mg/kg    | 0.1     | Org-022 | <0.1       | [NT] |      | [NT] | [NT]             | 108        |      |
| Aroclor 1260               | mg/kg    | 0.1     | Org-022 | <0.1       | [NT] |      | [NT] | [NT]             | [NT]       |      |
| Surrogate 2-fluorobiphenyl | %        |         | Org-022 | 84         | [NT] |      | [NT] | [NT]             | 86         |      |

| QUALITY CONT     | ROL: Acid E | xtractabl | e metals in soil       |            |      | Du   |      | Spike Recovery % |            |      |
|------------------|-------------|-----------|------------------------|------------|------|------|------|------------------|------------|------|
| Test Description | Units       | PQL       | Method                 | Blank      | #    | Base | Dup. | RPD              | LCS-1      | [NT] |
| Date digested    | -           |           |                        | 25/11/2022 | [NT] | [NT] | [NT] | [NT]             | 25/11/2022 |      |
| Date analysed    | -           |           |                        | 26/11/2022 | [NT] | [NT] | [NT] | [NT]             | 26/11/2022 |      |
| Arsenic          | mg/kg       | 4         | Metals-020 ICP-<br>AES | <4         | [NT] | [NT] | [NT] | [NT]             | 100        |      |
| Cadmium          | mg/kg       | 0.4       | Metals-020 ICP-<br>AES | <0.4       | [NT] | [NT] | [NT] | [NT]             | 99         |      |
| Chromium         | mg/kg       | 1         | Metals-020 ICP-<br>AES | <1         | [NT] | [NT] | [NT] | [NT]             | 102        |      |
| Copper           | mg/kg       | 1         | Metals-020 ICP-<br>AES | <1         | [NT] | [NT] | [NT] | [NT]             | 99         |      |
| Lead             | mg/kg       | 1         | Metals-020 ICP-<br>AES | <1         | [NT] | [NT] | [NT] | [NT]             | 101        |      |
| Mercury          | mg/kg       | 0.1       | Metals-021 CV-AAS      | <0.1       | [NT] | [NT] | [NT] | [NT]             | 98         |      |
| Nickel           | mg/kg       | 1         | Metals-020 ICP-<br>AES | <1         | [NT] | [NT] | [NT] | [NT]             | 99         |      |
| Zinc             | mg/kg       | 1         | Metals-020 ICP-<br>AES | <1         | [NT] | [NT] | [NT] | [NT]             | 100        |      |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.



Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

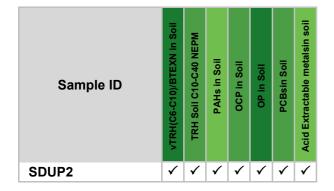
## SAMPLE RECEIPT ADVICE

| Client Details |                 |
|----------------|-----------------|
| Client         | JK Environments |
| Attention      | Katrina Taylor  |

| Sample Login Details                 |            |  |
|--------------------------------------|------------|--|
| Your reference                       | E30596PT   |  |
| Envirolab Reference                  | 34681      |  |
| Date Sample Received                 | 22/11/2022 |  |
| Date Instructions Received           | 22/11/2022 |  |
| Date Results Expected to be Reported | 28/11/2022 |  |

| Sample Condition                                       |          |
|--------------------------------------------------------|----------|
| Samples received in appropriate condition for analysis | Yes      |
| No. of Samples Provided                                | 1 Soil   |
| Turnaround Time Requested                              | Standard |
| Temperature on Receipt (°C)                            | 6.0      |
| Cooling Method                                         | Ice Pack |
| Sampling Date Provided                                 | YES      |

Comments Nil


Please direct any queries to:

| Pamela Adams                   | Chris De Luca                   |
|--------------------------------|---------------------------------|
| Phone: 03 9763 2500            | Phone: 03 9763 2500             |
| Fax: 03 9763 2633              | Fax: 03 9763 2633               |
| Email: padams@envirolab.com.au | Email: cdeluca@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au



The ' $\checkmark$ ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

34681 2/2

| <u>TO:</u><br>ENVIROLAB<br>12 ASHLEY S<br>CHATSWOO<br>P: (02) 99100<br>F: (02) 99100 |                    |                                       | SAMPLE AND CHAIN OF CUSTODY FOI           |                     |                   |                                                                                                                  |                         |            |                        | FROM:<br>JKEnvironment<br>REAR OF 115 WICKS ROAD<br>MACQUARIE PARK, NSW 2113<br>P: 02-9888 5000 F: 02-9888 5001 |                               |                       |          |                    |                      |                     |             |         |  |  |  |
|--------------------------------------------------------------------------------------|--------------------|---------------------------------------|-------------------------------------------|---------------------|-------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|----------|--------------------|----------------------|---------------------|-------------|---------|--|--|--|
| Attention: A                                                                         |                    |                                       | Page:                                     |                     | 2 of 2            | Attention: Katrina Taylor<br>ktaylor@kenvironments.com.au                                                        |                         |            |                        |                                                                                                                 |                               |                       |          |                    |                      |                     |             |         |  |  |  |
| Location:                                                                            | Cooma              |                                       |                                           |                     |                   |                                                                                                                  |                         |            |                        | San                                                                                                             | mple Preserved in Esky on Ice |                       |          |                    |                      |                     |             |         |  |  |  |
| Sampler:                                                                             | AD                 |                                       | 5 a 17 7                                  |                     | e tan <u>'</u>    |                                                                                                                  |                         | 1          |                        | r                                                                                                               | <b>ו</b>                      | iests F               | Requir   | red                | <del></del>          | -                   | -           | Т       |  |  |  |
| Date<br>Sampled                                                                      | Lab<br>Ref:        | Sample Number                         | Depth (m)                                 | Sample<br>Container | PID               | Sample<br>Description                                                                                            | Cambo 6                 | Combo 3    | Asbestos (WA<br>500mL) | Asbestos<br>(Detection)                                                                                         | BTEX                          |                       |          |                    | 1                    |                     |             |         |  |  |  |
| 17/11/2022                                                                           | 20                 | SDUP2                                 | -                                         | . G                 | -                 | Soil Duplicate                                                                                                   | X                       |            | <u>с</u> в             | lease                                                                                                           | sen                           | d ţo                  | Mell     | bour               | ie Er                | ivirol              | ab          |         |  |  |  |
| 17/11/2022                                                                           | 20 <b>3</b>        | SDUP3                                 |                                           | ζ, G                | , -:- "           | Soil Duplicate                                                                                                   | 4                       |            | 1 × 1<br>12. N         |                                                                                                                 |                               |                       | -        |                    | -                    |                     |             |         |  |  |  |
| 17/11/2022                                                                           | 28                 | SDUP4                                 | -                                         | G                   | -                 | Soil Duplicate                                                                                                   |                         |            |                        |                                                                                                                 |                               |                       |          |                    |                      |                     |             |         |  |  |  |
| 17/11/2022                                                                           | 28                 | TB-S2                                 |                                           | • G •               |                   | Trip Blank                                                                                                       |                         | X,         | and the second         | رو<br>د 4                                                                                                       | i.                            |                       | 1        |                    | 4<br>4               |                     |             |         |  |  |  |
| 17/11/2022                                                                           | 29                 | TS-S2                                 | -                                         | v                   | _                 | Trip Spike                                                                                                       |                         |            |                        |                                                                                                                 | X                             |                       |          |                    |                      |                     |             |         |  |  |  |
| 17/11/2022                                                                           | ંડેંગ              | FR2-SHOVEL                            |                                           | #                   |                   | Field Rinsate                                                                                                    |                         | X          |                        | 5<br>5<br>1944                                                                                                  |                               |                       | -        |                    |                      |                     |             | ,       |  |  |  |
| 17/11/2022                                                                           | 31                 | FCF1                                  | Surface                                   | A                   | -                 | Fragment                                                                                                         |                         |            |                        | X                                                                                                               |                               |                       |          |                    |                      |                     |             |         |  |  |  |
| 17/11/2022                                                                           | 32                 | FCF2                                  | Surface                                   | Ą                   |                   | Fragment                                                                                                         | 2<br>1                  |            |                        | X                                                                                                               |                               |                       | <u>}</u> |                    |                      |                     |             |         |  |  |  |
| 17/11/2022                                                                           | 33                 | FCF3                                  | Surface                                   | A                   | -                 | Fragment                                                                                                         |                         |            |                        |                                                                                                                 |                               |                       |          |                    |                      |                     |             |         |  |  |  |
| 17/11/2022                                                                           | . 34               | TP205-FCF1                            | 0.1-0.6                                   | A                   |                   | Fragment                                                                                                         |                         | 1 - 13<br> |                        | Х                                                                                                               |                               |                       |          |                    | 2.<br>               | · · ·               |             |         |  |  |  |
| 17/11/2022                                                                           | 35                 | TP205-FCF2                            | 1.0-1.5                                   | A                   | -                 | Fragment                                                                                                         |                         | ,          |                        | X                                                                                                               |                               |                       |          | <u> </u>           |                      |                     |             |         |  |  |  |
| 17/11/2022                                                                           | 36                 | TP205-FCF3                            | 1.0-1.5                                   | A                   | ی میکند.<br>منابع | Fragment                                                                                                         |                         | i:         | 1.<br>1.<br>1.         | X                                                                                                               |                               |                       |          |                    | 5                    |                     | ΓŸ          |         |  |  |  |
|                                                                                      |                    | ang a gine to gate to sole.           | (1/ ··· · · · · · · · · · · · · · · · · · | 9.7.                |                   |                                                                                                                  |                         |            | COMPLET                |                                                                                                                 |                               |                       | ļ        |                    |                      |                     |             |         |  |  |  |
| · · · · · · · · ·                                                                    | R<br>Inc. in       |                                       |                                           | 5 7.                |                   |                                                                                                                  |                         |            |                        |                                                                                                                 | " ".                          |                       | 1        |                    |                      |                     |             | ÷       |  |  |  |
|                                                                                      |                    |                                       | . * .                                     |                     |                   |                                                                                                                  | ļ                       | 3-11       |                        |                                                                                                                 |                               | <u> </u>              |          |                    | 5.                   |                     |             |         |  |  |  |
| арана<br>                                                                            | "°" э              |                                       |                                           |                     | 19.<br>19         |                                                                                                                  |                         |            |                        |                                                                                                                 |                               |                       |          |                    |                      | т.                  |             |         |  |  |  |
| .a. • "                                                                              |                    |                                       | 9 10 1 10                                 | 1.0                 |                   | 2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1                                                                         |                         |            | 'n.                    |                                                                                                                 | <br>                          |                       |          |                    | ¥ -                  |                     |             |         |  |  |  |
| 1<br>                                                                                |                    |                                       | - J <sub>2,4</sub> e                      | <u> </u>            |                   |                                                                                                                  |                         |            | : No.                  | 5                                                                                                               |                               | 3                     |          |                    | <u> `</u> -          | , , ,               |             | i.      |  |  |  |
|                                                                                      |                    | · · · · · · · · · · · ·               |                                           | a 11 - 2            |                   | 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                          |                         | . < . 5    |                        |                                                                                                                 |                               | <u> </u>              |          |                    | ¢.                   |                     |             |         |  |  |  |
| 1                                                                                    | e <sup>2</sup> , g |                                       |                                           |                     |                   |                                                                                                                  |                         | 2          | 5 V.                   | ₩., ->                                                                                                          |                               | ð                     | 1        | <u>ч</u>           | 39°                  | ia.<br>9.1          | ·_, `       |         |  |  |  |
|                                                                                      | n ee mais          |                                       |                                           |                     | ·                 |                                                                                                                  | i en c                  |            | 1                      |                                                                                                                 | r.                            | :-                    |          |                    | l r <sup>-16</sup> - |                     |             | 5       |  |  |  |
| 1. ···                                                                               |                    |                                       | n at see                                  |                     | ۹<br>د            |                                                                                                                  | 6.0                     |            | 1                      | *~5                                                                                                             | <u> </u>                      | <u> </u>              | 11. je   |                    |                      |                     |             |         |  |  |  |
| <u> </u>                                                                             |                    | · · · · · · · · · · · · · · · · · · · |                                           |                     |                   | HY IN THE H                                                                                                      |                         |            | . *                    |                                                                                                                 | et                            |                       | <u> </u> |                    |                      | 1                   |             |         |  |  |  |
| <u> </u>                                                                             |                    | ، <sup>د</sup> ۲                      | 3e 8                                      |                     |                   | and a second s | i, r                    | 5 A:<br>   |                        |                                                                                                                 |                               |                       | <u> </u> | " a" n             | <u>.</u>             |                     |             | 4(-<br> |  |  |  |
|                                                                                      |                    | detection limits                      | required):                                | L                   | l                 |                                                                                                                  | G - 2<br>A - Zi<br># 2x |            | Glass<br>Asbes         | Jar<br>itos Bi                                                                                                  | ag<br>NO3 b                   | ottle,                |          | l<br>Bag<br>FEX VI | ļ                    |                     | <u> _</u>   |         |  |  |  |
| Relinguishe                                                                          |                    | y cmule                               | Mie                                       | Date: 18            | .11.22<br>()( )   | 22 1232.                                                                                                         | Time                    | :          |                        |                                                                                                                 | a                             | ived B<br>SEA<br>UCIO | 'nΩΛ     | , A                | ſ                    | Date<br>\ 8/<br>ા પ | 11/2<br>15- | 2       |  |  |  |

•

# 311057

2°

6

## SAMPLE AND CHAIN OF CUSTODY FORM

.

| TO:<br>ENVIROLAB SI<br>12 ASHLEY ST<br>CHATSWOOD | REET        |                  |               | JKE Job<br>Number:    |                              | (E30596PT                                        |                                 |                |                   |                         | FROM  |                                                                                       | k           | Ènv                     | iro                       | nn              | ner           | nts                    |                                                 |  |  |
|--------------------------------------------------|-------------|------------------|---------------|-----------------------|------------------------------|--------------------------------------------------|---------------------------------|----------------|-------------------|-------------------------|-------|---------------------------------------------------------------------------------------|-------------|-------------------------|---------------------------|-----------------|---------------|------------------------|-------------------------------------------------|--|--|
| P: (02) 991062<br>F: (02) 991062                 | 200         | 067              |               | Date Resi<br>Required | uired: MACQUARIE PARK, NSW 2 |                                                  |                                 |                |                   |                         |       | REAR OF 115 WICKS ROAD<br>MACQUARIE PARK, NSW 2113<br>D. 03 0979 E000 E. 03 0979 E001 |             |                         |                           |                 |               |                        |                                                 |  |  |
| Attention: Ail                                   | een         |                  |               | Page:                 |                              | 1 <u>1 of 2</u>                                  |                                 |                |                   |                         |       | -9888 :<br>ition: {                                                                   |             | · K                     |                           | -9888<br>a Tayl |               |                        |                                                 |  |  |
|                                                  | 6           | · · ·            |               | L                     | ·                            | <del> </del>                                     | <del>- 1</del>                  |                |                   | Sam                     | nle P | <u>ktaylo</u><br>reserve                                                              |             | enviro<br>Esku o        |                           | ts.con          | n.au          |                        | -                                               |  |  |
| Location:<br>Sampler:                            | Cooma<br>AD | I,               |               |                       |                              | • • • • • • • • • • • • • • • • • • •            | -                               |                |                   | Jan                     | ·     | ests Re                                                                               | _           |                         |                           |                 |               |                        | 1                                               |  |  |
| Date<br>Sampled                                  | Lab<br>Ref: | Sample<br>Number | Depth (m)     | Sample<br>Container   | PID                          | Sample<br>Description                            | Comba 6                         | Combo 3        | Asbestos (WA      | Asbestos<br>(Detection) | BTEX  |                                                                                       |             |                         | ROLI<br>No:               | 1 (             | hatsı<br>Ph   | 12<br>100d /<br>(02) : | Service<br>Ashley S<br>SW 2061<br>910 6200<br>7 |  |  |
| 17/11/2022                                       | 1           | ,<br>TP201       | 0-0.1         | G, A                  | 0.9                          | F: Silty Clay                                    | x                               |                | X                 |                         |       |                                                                                       |             | Date                    | Rec                       | eivec           |               | \$1                    | 1/2                                             |  |  |
| 17/11/2022                                       | 2           | TP201            | 0.5-0.6       | G, A                  | 0.6                          | F: Silty Clay                                    |                                 |                |                   |                         |       |                                                                                       |             | <del>- Tim</del><br>Rec | ⊨ <del>Rer</del><br>eiy€d | By-             | }             | 41                     | 5                                               |  |  |
| 17/11/2022                                       | 3           | TP201            | 1.0-1.2       | G, A                  | 0.5                          | XW Granite                                       |                                 |                |                   |                         |       |                                                                                       |             |                         | đ                         | aliner          | ibien<br>bacl |                        | ┣.                                              |  |  |
| 17/11/2022                                       | 4           | TP202            | 0-0.1         | G, A                  | 0.5                          | F: Silty Clay                                    | X                               |                | X                 | ŀ                       |       |                                                                                       |             |                         | ing;<br>unity:            | v fac           |               |                        | pne <sup>12</sup>                               |  |  |
| 17/11/2022                                       | 3           | TP202            | 0.5-0.6       | G, A                  | 0                            | F: Silty Clay                                    |                                 |                |                   |                         |       |                                                                                       | -           |                         |                           | ľ               |               | <u> </u>               |                                                 |  |  |
| 17/11/2022                                       | 6           | TP202            | 0.8-1.0       | G, A                  | 0                            | XW Granite                                       |                                 |                |                   |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 7           | ТР203            | 0-0.1         | G, A                  | 0.7                          | F: Silty Sandy Gravel                            | X                               |                | X                 |                         |       |                                                                                       |             |                         |                           | 1               |               |                        | 1                                               |  |  |
| 17/11/2022                                       | 8           | TP203            | 0.4-0.6       | G A                   | 1                            | F: Silty Clay                                    |                                 | -              |                   |                         |       |                                                                                       | · .         |                         |                           | -               |               |                        |                                                 |  |  |
| 17/11/2022                                       | 9           | тр203            | 1.0-1.2       | G, A                  | 0.8                          | Silty Clay                                       | <u> </u>                        |                |                   |                         |       |                                                                                       |             |                         |                           | -               |               |                        | ľ                                               |  |  |
| 17/11/2022                                       | 10          | TP204            | 0-0.1         | G, A                  | 0.8                          | F: Silty Clay                                    | X                               |                | X                 |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022 <sup>-</sup>                          | .4          | TP204            | 0.6-0.8       | G, A                  | 0.7                          | XW Granite                                       |                                 |                |                   | -                       |       | -                                                                                     |             |                         |                           | -               |               | •                      |                                                 |  |  |
| 17/11/2022                                       | 12          | TP205            | 0-0.1         | G, A                  | 0.3                          | F: Silty Clay                                    | X                               |                | X                 | • •                     |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 13          | TP205            | 0.4-0.5       | G, A                  | 0.4                          | F: Silty Clay                                    |                                 |                |                   |                         |       |                                                                                       | -           |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 14          | TP205            | 1.0-1.2       | G, A                  | 1.1                          | F: Silty Clay                                    |                                 |                |                   |                         |       |                                                                                       |             |                         | 1                         |                 |               | -                      |                                                 |  |  |
| 17/11/2022                                       | 15          | TP205            | 1.5-1.6       | G, A                  | 0.9                          | XW Granite                                       |                                 |                |                   |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 16          | TP206            | 0-0.1         | G, A                  | 0.4                          | F: Silty Clay                                    | X                               |                | X                 |                         |       |                                                                                       |             | 1                       |                           |                 | -             |                        |                                                 |  |  |
| 17/11/2022                                       | 17          | TP205            | 0.5-0.7       | G, A                  | 0.7                          | F: Silty Clay                                    |                                 |                |                   |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 18          | TP206            | 0.7-0.9       | G, A                  | 1.1                          | XW Granite                                       |                                 |                |                   | 1                       |       |                                                                                       |             | -                       |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 19          | TP207            | 0-0.1         | G, A                  | 0.6                          | F: Silty Clay                                    | X                               |                | X                 |                         |       |                                                                                       |             |                         |                           | _               |               |                        |                                                 |  |  |
| 17/11/2022                                       | 20          | TP207            | 0.2-0.4       | - G, A                | 1.8                          | F: Silty Clay                                    |                                 |                |                   |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 37          | тр207            | 0.8-1.0       | G, A                  | 2.3                          | Silty Clay                                       |                                 |                |                   |                         | -     |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 22          | ТР208            | 0-0.1         | G, A                  | 1                            | F: Silty Clay                                    | X                               |                | X                 |                         |       |                                                                                       |             |                         |                           |                 | ·             |                        | 1                                               |  |  |
| 17/11/2022                                       | 23          | тр208            | 0.2-0.4       | G, A                  | 2.3                          | F: Silty Clay                                    |                                 |                |                   |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       | 24          | TP208            | 0.6-0.8       | G, A                  | 3,4                          | Silty Clay                                       |                                 |                |                   |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
| 17/11/2022                                       |             | SDUP1            | - :           | G                     | -                            | Soil Duplicate                                   | X                               |                |                   |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |
|                                                  |             |                  | mits required | ,                     | 11 27                        |                                                  | # 2x a                          | plock<br>amber | Asbe              | stos Ba<br>, 1x HN      | 103 b | P - Plas<br>ottle, Z                                                                  | x BTE       |                         |                           | <b>-</b>        |               |                        |                                                 |  |  |
| Relinquished<br>ELSUU                            | -           |                  | Nento         | Date: 18.             | $\frac{1}{2}$                | 1232                                             | Time                            |                | olab <sup>I</sup> | Servico<br>n Drn        |       | ived By                                                                               | "<br>"<br>" | ,CL                     | S                         | Date:<br>18/    | 11/2          | 2                      |                                                 |  |  |
|                                                  |             | ,                |               |                       | ·                            | Date Proce<br>Time Rene<br>Keepvee<br>Terr - Cor | 34<br>ived:1<br>ived:<br>3y:(A) | 121            | y<br>nti<br>.ur   | Ll<br>om                |       | C                                                                                     | Ċ           | Sph                     | њу                        | ť               | 412           | -                      |                                                 |  |  |
|                                                  |             |                  |               |                       |                              | Cooline in<br>Second                             | elfe.                           | ck.            | )                 |                         |       |                                                                                       |             |                         |                           |                 |               |                        |                                                 |  |  |

.

,



# **Appendix F: Report Explanatory Notes**





# QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)<sup>14</sup> methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)<sup>15</sup>. The NEPM (2013) is consistent with these documents.

#### A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).* 

#### B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

#### C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

#### D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

#### E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;



 <sup>&</sup>lt;sup>14</sup> US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 <sup>15</sup> Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide



- All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

#### F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

#### G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

#### H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

#### (Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

#### I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

#### J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{(D1 + D2)/2}$ 







# Appendix G: Data (QA/QC) Evaluation





# Data (QA/QC) Evaluation

#### A. INTRODUCTION

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in the SAQP. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

#### 1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

#### 2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

| Sample Type                          | Sample Identification                  | Frequency<br>(of Sample Type)                                                                             | Analysis Performed                                    |
|--------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Intra-laboratory<br>duplicate (soil) | SDUP1 (primary sample<br>TP205 0-0.1m) | Approximately 5% of primary samples                                                                       | Heavy metals, TRH/BTEX, PAHs,<br>OCPs, OPPs, and PCBs |
| Inter-laboratory<br>duplicate (soil) | SDUP2 (primary sample<br>TP201 0-0.1m) | Approximately 5% of primary samples                                                                       | Heavy metals, TRH/BTEX, PAHs,<br>OCPs, OPPs, and PCBs |
| Trip spike (soil)                    | TS1-S2<br>(18 November 2022)           | One for the investigation<br>to demonstrate adequacy<br>of preservation, storage<br>and transport methods | BTEX                                                  |
| Trip blank (soil)                    | TB-S2<br>(27 September 2022)           | One for the investigation<br>to demonstrate adequacy<br>of storage and transport<br>methods               | Heavy metals, TRH/BTEX, PAHs                          |
| Rinsate<br>(shovel)                  | FR2-Shovel<br>(18 November 2022)       | One for the investigation<br>to demonstrate adequacy<br>of decontamination<br>methods                     | Heavy metals, TRH/BTEX, PAHs                          |

The results for the field QA/QC samples are detailed in the laboratory summary table Q1 attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.





#### 3. Data Assessment Criteria

We adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

#### Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

#### Field Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

#### Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

#### Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

#### RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and</li>
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

#### Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

#### Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

#### Method Blanks

• All results less than PQL.





#### B. DATA EVALUATION

#### 1. <u>Sample Collection, Storage, Transport and Analysis</u>

Samples were collected by trained field staff in accordance. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times generally in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies. Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

We note that the blank and rinsate were not analysed for PCBs and pesticides. This was deemed acceptable given that there were no detectable concentrations of these contaminants in the primary samples.

#### 2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC.

#### 3. Field QA/QC Sample Results

#### **Field Duplicates**

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- An elevated RPD was reported for TRH F3 and lead in SDUP1/TP205 (0-0.1m); and
- An elevated RPD was reported for TRH F4 and lead in SDUP2/TP201 (0-0.1m).

These TRH and lead results outside the acceptable limits had been attributed to minor sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. As both the primary and duplicate sample results were significantly less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

#### Field/Trip Blanks

During the investigation, one soil trip blank was placed in the esky during sampling and transported back to the laboratory. The soil trip blank analysis results were all less than the PQLs with the exception of chromium, lead and zinc with reported concentrations of 3mg/kg, 2mg/kg and 2mg/kg respectively. Low level metals concentrations are typical in washed sand which is utilised as blank material. In our experience, the concentrations reported were consistent with background concentrations in a sand matrix and were not



indicative of cross-contamination. On this basis, cross contamination between samples that may have significance for data validity did not occur.

#### Rinsates

A low concentration of TRH was detected in the rinsate sample. This detection is consistent with the use of plastic containers (these were used to store the rinsate water) as noted in the Envirolab report comments (report ref: 311057). The detectable concentration of copper is most likely attributed to the use of potable water. Copper is associated with leaking water infrastructure typically encountered in urban groundwater. Considering the soil analysis results obtained during the investigation, there is considered to be a low potential for cross contamination to have occurred to an extent that may have significance for data validity.

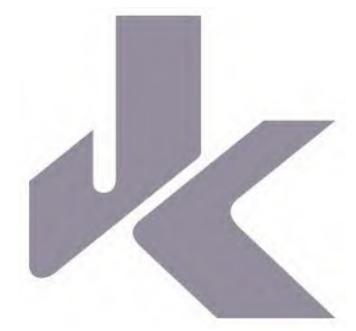
#### Trip Spikes

The results ranged from 96% to 98% and indicated that field preservation methods were appropriate.

#### 4. Laboratory QA/QC

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation.

#### C. DATA QUALITY SUMMARY


We are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These nonconformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.



# Appendix H: Sampling, Analysis and Quality Plan (SAQP)





REPORT TO HEALTH INFRASTRUCTURE

ON

SAMPLING, ANALYSIS AND QUALITY PLAN (SAQP)

FOR DETAILED (STAGE 2) SITE INVESTIGATION

KEY WORKER ACCOMMODATION DEVELOPMENT STAGE 2, COOMA HOSPITAL, BENT STREET, COOMA, NSW

Date: 15 November 2022 Ref: E30596PT-SAQP2

# JKGeotechnics www.jkgeotechnics.com.au

T: +61 2 9888 5000 JK Geotechnics Pty Ltd ABN 17 003 550 801





022/202

Report prepared by:

Katrina/Taylor Associate Environmental Scientist

Report reviewed by:

Brendan Page Principal Associate | Environmental Scientist CEnvP SC

For and on behalf of JKG PO BOX 976 NORTH RYDE BC NSW 1670

#### **DOCUMENT REVISION RECORD**

| Report Reference | Report Status | Report Date      |
|------------------|---------------|------------------|
| E30596PT-SAQP2   | Final Report  | 15 November 2022 |
|                  |               |                  |
|                  |               |                  |
|                  |               |                  |
|                  |               |                  |

© Document copyright of JK Geotechnics

This report (which includes all attachments and annexures) has been prepared by JK Geotechnics (JKG) for its Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKG and its Client and is therefore subject to:

- a) JKG's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKG;
- c) The terms of contract between JKG and the Client, including terms limiting the liability of JKG.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKG which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKG does so entirely at their own risk and to the fullest extent permitted by law, JKG accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

At the Company's discretion, JKG may send a paper copy of this report for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence. The USER shall ascertain the accuracy and the suitability of this information for the purpose intended; reasonable effort is made at the time of assembling this information to ensure its integrity. The recipient is not authorised to modify the content of the information supplied without the prior written consent of JKG.





# **Table of Contents**

| 1.1    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | PROPOSED DEVELOPMENT DETAILS                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.2    | AIMS AND OBJECTIVES                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.3    | Scope of Work                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SITE I | NFORMATION                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.1    | Previous Investigations                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.2    | SITE IDENTIFICATION                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.3    | SITE DESCRIPTION SUMMARY                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.4    | Underground Services                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.5    | SUMMARY OF GEOLOGY AND HYDROGEOLOGY                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SUM    | MARY OF CONCEPTUAL SITE MODEL                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMF   | PLING, ANALYSIS AND QUALITY PLAN                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.1    | DATA QUALITY OBJECTIVES (DQO)                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.2    | SOIL SAMPLING PLAN AND METHODOLOGY                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.3    | LABORATORY ANALYSIS AND ANALYTICAL RATIONALE                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.4    |                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIMIT  | ATIONS                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>SUMI<br>SAMF<br>4.1<br>4.2<br>4.3<br>4.4 | <ul> <li>2.1 PREVIOUS INVESTIGATIONS</li> <li>2.2 SITE IDENTIFICATION</li> <li>2.3 SITE DESCRIPTION SUMMARY</li> <li>2.4 UNDERGROUND SERVICES</li> <li>2.5 SUMMARY OF GEOLOGY AND HYDROGEOLOGY</li> <li>SUMMARY OF CONCEPTUAL SITE MODEL</li> <li>SAMPLING, ANALYSIS AND QUALITY PLAN</li> <li>4.1 DATA QUALITY OBJECTIVES (DQO)</li> <li>4.2 SOIL SAMPLING PLAN AND METHODOLOGY</li> <li>4.3 LABORATORY ANALYSIS AND ANALYTICAL RATIONALE</li> </ul> |

## **List of Tables**

| Table 2-1: Site Identification                | 3  |
|-----------------------------------------------|----|
| Table 3-1: Review of CSM                      | 6  |
| Table 4-1: Soil Sampling Plan and Methodology | 11 |
| Table 4-2: Laboratory Details                 | 13 |

## **Attachments**

Appendix A: Report Figures Appendix C: Report Explanatory Notes Appendix D: Guidelines and Reference Documents

Show

# ×

# Abbreviations

| Ambient Background Concentrations                                        | ABC             |
|--------------------------------------------------------------------------|-----------------|
| Added Contaminant Limits                                                 | ACL             |
| Asbestos Containing Material                                             | ACM             |
| Area of Environmental Concern                                            | AEC             |
| Australian Height Datum                                                  | AHD             |
| Acid Sulfate Soil                                                        | ASS             |
| Below Ground Level                                                       | BGL             |
| Benzo(a)pyrene Toxicity Equivalent Factor                                | BaP TEQ<br>BTEX |
| Benzene, Toluene, Ethylbenzene, Xylene                                   | CEC             |
| Cation Exchange Capacity<br>Contaminated Land Management                 | CLM             |
| Contaminated Land Management                                             | COPC            |
| Chain of Custody                                                         | COC             |
| Conceptual Site Model                                                    | CSM             |
| Dial Before You Dig                                                      | DBYD            |
| Data Quality Indicator                                                   | DQI             |
| Data Quality Objective                                                   | DQO             |
| Detailed (Stage 2) Site Investigation                                    | DSI             |
| Ecological Investigation Level                                           | EIL             |
| Ecological Screening Level                                               | ESL             |
| Environment Protection Authority                                         | EPA             |
| Environmental Site Assessment                                            | ESA             |
| Health Investigation Level                                               | HILs            |
| Health Screening Level                                                   | HSL             |
| International Organisation of Standardisation                            | ISO             |
| JK Environments                                                          | JKG             |
| Lab Control Spike                                                        | LCS             |
| Light Non-Aqueous Phase Liquid                                           | LNAPL           |
| Map Grid of Australia                                                    | MGA             |
| National Association of Testing Authorities                              | NATA            |
| National Environmental Protection Measure                                | NEPM            |
| Organochlorine Pesticides                                                | OCP             |
| Organophosphate Pesticides                                               | OPP             |
| Polycyclic Aromatic Hydrocarbons                                         | PAH             |
| Polychlorinated Biphenyls<br>Photo-ionisation Detector                   | PCBs<br>PID     |
|                                                                          | POEO            |
| Protection of the Environment Operations<br>Practical Quantitation Limit | POEO            |
| Quality Assurance                                                        | QA              |
| Quality Control                                                          | QC              |
| Remediation Action Plan                                                  | RAP             |
| Relative Percentage Difference                                           | RPD             |
| Site Assessment Criteria                                                 | SAC             |
| Sampling, Analysis and Quality Plan                                      | SAQP            |
| State Environmental Planning Policy                                      | SEPP            |
| Site Specific Assessment                                                 | SSA             |
| Source, Pathway, Receptor                                                | SPR             |
| Specific Contamination Concentration                                     | SCC             |
| Standard Penetration Test                                                | SPT             |
| Trip Blank                                                               | ТВ              |
| Total Recoverable Hydrocarbons                                           | TRH             |
| Trip Spike                                                               | TS              |
| Upper Confidence Limit                                                   | UCL             |
|                                                                          |                 |

# **JK**Geotechnics



VOC WHO WHS

| Volatile Organic Compounds |  |
|----------------------------|--|
| World Health Organisation  |  |
| Work Health and Safety     |  |

| Units                        |       |
|------------------------------|-------|
| Metres BGL                   | mBGL  |
| Metres                       | m     |
| Milligrams per Kilogram      | mg/kg |
| Milligrams per Litre         | mg/L  |
| Parts Per Million            | ppm   |
| Percentage                   | %     |
| Percentage weight for weight | %w/w  |

short short



## 1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Geotechnics (JKG) to prepare a Sampling, Analysis and Quality Plan (SAQP) for the Detailed (Stage 2) Site Investigation (DSI) to be undertaken for the proposed Cooma Hospital Key Worker Accommodation Development – Stage 2 at Cooma Hospital, Bent Street, Cooma, NSW ('the site'). The site location is shown on Figure 1 and the investigation will be confined to the site boundaries as shown on Figure 2.

JKG's environmental division (Environmental Investigation Services - EIS) has previously undertaken an Environmental Site Assessment (ESA) of the wider hospital property. A summary of relevant information from this investigation has been included in Section 2.

## 1.1 Proposed Development Details

The proposed development for this stage of works includes construction of a single storey, six unit block with indoor and outdoor shared space, which is proposed to be positioned in the central east of the existing hospital property (refer to Figure 1). The development is to be utilised for worker accommodation.

#### 1.2 Aims and Objectives

The primary aim of the DSI is to characterise the soil contamination conditions in order to assess site risks in relation to contamination and establish whether remediation is required. A secondary aim is to provide preliminary waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

The DSI objectives are to:

- Provide an appraisal of the past site use(s) based on a review of limited historical records;
- Assess the soil contamination conditions;
- Assess the potential risks posed by contamination to the receptors identified in the Conceptual Site Model (CSM);
- Provide a preliminary waste classification for the in-situ soil; and
- Assess whether the site is suitable or can be made suitable (via remediation) for the proposed development, from a contamination viewpoint; and
- Assess whether further intrusive investigation and/or remediation is required.

## 1.3 Scope of Work

The SAQP was prepared generally in accordance with a JKG proposal (Ref: EP57659PT) of 3 November 2022 and written acceptance from the client of 14 November 2022.

The scope of work included review of the existing project information and preparation of an SAQP with regards to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as





amended (2013)<sup>1</sup>, and other guidelines made under or with regards to the Contaminated Land Management Act (1997)<sup>2</sup>. A list of reference documents/guidelines is included in the appendices.

-3AC 



<sup>&</sup>lt;sup>1</sup> National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

<sup>&</sup>lt;sup>2</sup> Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)



#### 2 SITE INFORMATION

#### 2.1 Previous Investigations

We undertook an Environmental Site Assessment (ESA) across the wider hospital property (including the site), in 2017. The ESA included a review of site history information and soil sampling from 40 borehole locations across the wider hospital property, including one location within the site. Fill (i.e. historically imported soils, or soils placed during prior earthworks) in this location was indicated to be deeper than 0.32m in depth.

The ESA identified the following potential contamination sources/AEC relevant to the proposed development area that was investigated:

- 1. Fill material (imported material);
- 2. Use of pesticides; and
- 3. Hazardous building materials in existing and former buildings.



The assessment did not encounter elevated concentrations of the contaminants of concern in the soil samples analysed for the investigation and all results were below the site assessment criteria (SAC). The report concluded that the risk posed by the AEC to the receptors was relatively low. At the time of the ESA, the site was considered to be suitable for the proposed hospital redevelopment, provided that:

- 1. The environmental consultant was notified of any unexpected finds (e.g. buried structures, fibre cement fragments, discoloured or odorous soil etc) encountered between sampling locations (particularly beneath buildings) so that appropriate action could be taken; and
- 2. All hazardous materials (eg asbestos cement) were removed from buildings / structures prior to demolition.

Relevant information from the previous investigation has been considered and documented throughout the SAQP. Additional site history information relevant to the site will be included in the DSI.

#### 2.2 Site Identification

| Table 2-1: Site Identification       |                                                                                   |
|--------------------------------------|-----------------------------------------------------------------------------------|
| Site Address:                        | Bent Street, Cooma, NSW                                                           |
| Lot & Deposited Plan:                | Part of Lot 2 in DP1161366                                                        |
| Current Land Use:                    | Hospital grounds<br>(landscaped/paved areas outside existing building footprints) |
| Proposed Land Use:                   | Continued use as part of the hospital grounds for key worker accommodation        |
| Local Government Authority<br>(LGA): | Snowy Monaro regional Council                                                     |
| Current Zoning:                      | SP2: Infrastructure                                                               |
| Site Area (m²) (approx.):            | 875                                                                               |



| Geographical Location<br>(decimal degrees) (approx. centre<br>of site): | Latitude: -36.2410161<br>Longitude: 149.1307076 |
|-------------------------------------------------------------------------|-------------------------------------------------|
| Site Plans:                                                             | Appendix A                                      |

## 2.3 Site Description Summary

A site inspection was not undertaken for preparation of the SAQP and the following site description is based on existing project information and information obtained from Google Maps / Street View and a Lotsearch Environmental Risk and Planning report. The site description will be updated in the DSI:

- The site is located in the central east of the wider hospital property, which itself is located in a predominantly residential area of Cooma;
- The site is bound by the Monaro Highway to the east;
- The site and wider hospital property is located approximately 200m to the east of Cooma Creek;
- The regional topography is characterised by undulating terrain that generally falls towards Cooma Creek to the north and north east of the site and wider hospital property;
- The site slopes gently towards the north / north-east and parts of the site appear to have been levelled to account for the slope and accommodate the adjacent driveway and parking area;
- The site is predominantly a grassed landscaped garden area to the east of an existing on-grade parking area;
- The site appears to be entirely unfenced, with a concrete block retaining wall along the eastern side of the site; and
- Surface water would be expected to infiltrate the unpaved site surface, with excess flow direction being towards to the north-east in keeping with the localised fall of the site.

## 2.4 Underground Services

The 'Dial Before You Dig' (DBYD) plans and utilities plan provided by the client were reviewed in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Major services were not identified at the site that may act as preferential pathways for contamination migration.

## 2.5 Summary of Geology and Hydrogeology

## 2.5.1 Regional Geology and Soil/Bedrock Conditions

Regional geological maps indicated that the site is underlain by Cooma Granodiorite, which typically consists of biotite granite, foliated granite, leucogranite, diorite and tonalitic gneiss.

The previous investigations encountered shallow granite bedrock across the site and wider hospital property from depths of approximately 0.4mBGL to 2mBGL.

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation.



#### 2.5.2 Hydrogeology and Groundwater

Hydrogeological information reviewed for the investigation indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes fractured or fissured, extensive aquifers of low to moderate productivity. There was a total of 48 registered bores within 2km of the site. The nearest registered bore was 130m cross-gradient to the north-east of the site and was registered for water supply purposes. All other bores were over 775m from the site and none were down-gradient.

There is a reticulated water supply in the area and consumption of groundwater is not expected to occur.

Considering the local topography, groundwater is anticipated to flow towards the north and north-east in sympathy with the topography and towards the nearest down gradient water body.

The closest surface water body is Cooma Creek located approximately 200m to the east of the site at its closest point. This is down-gradient and is a potential receptor.



# 3 SUMMARY OF CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. An iteration of the CSM for the site is presented in the following table and is based on the site information (including the site inspection information) and the review of site history information including previous investigation findings.

| Contaminant source(s) and<br>contaminants of concernPotential contamination sources/contaminating activities: historically<br>soil; use of pesticides around and beneath buildings; and hazardous build<br>materials from former demolition works (on the wider hospital propert<br>the existing hospital structures.Contaminants of potential concern (CoPC): | ilding                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| materials from former demolition works (on the wider hospital propert<br>the existing hospital structures.                                                                                                                                                                                                                                                     | -                        |
| the existing hospital structures.                                                                                                                                                                                                                                                                                                                              | and a second constants t |
|                                                                                                                                                                                                                                                                                                                                                                | ty) and within           |
| Contaminants of notential concern (CoPC)                                                                                                                                                                                                                                                                                                                       |                          |
|                                                                                                                                                                                                                                                                                                                                                                |                          |
| Soil: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury                                                                                                                                                                                                                                                                                          |                          |
| zinc), petroleum hydrocarbons (referred to as total recoverable hydroca                                                                                                                                                                                                                                                                                        |                          |
| TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic ar                                                                                                                                                                                                                                                                                         |                          |
| hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosph                                                                                                                                                                                                                                                                                            | ate pesticides           |
| (OPPs), polychlorinated biphenyls (PCBs) and asbestos.                                                                                                                                                                                                                                                                                                         |                          |
| Affected media For the purpose of the DSI fill/soil. The potential for groundwater impact                                                                                                                                                                                                                                                                      | cts to pose a            |
| risk to the receptors will be considered initially under the DSI scope bas                                                                                                                                                                                                                                                                                     | sed on the soil          |
| results (i.e. an assessment will be made regarding whether the soils rep                                                                                                                                                                                                                                                                                       | present a                |
| potential source of groundwater contamination via processes such as le                                                                                                                                                                                                                                                                                         |                          |
| related sources of groundwater contamination have not been identified                                                                                                                                                                                                                                                                                          | d to date.               |
|                                                                                                                                                                                                                                                                                                                                                                |                          |
| <b>Receptor identification</b> Human receptors include site occupants/users (including adult workers                                                                                                                                                                                                                                                           |                          |
| and children visitors), construction workers and intrusive maintenance                                                                                                                                                                                                                                                                                         | workers. Off-            |
| site human receptors include adjacent land users.                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                |                          |
| Ecological receptors include terrestrial organisms and plants within unp                                                                                                                                                                                                                                                                                       | paved areas              |
| (including any proposed landscaped areas).                                                                                                                                                                                                                                                                                                                     |                          |
|                                                                                                                                                                                                                                                                                                                                                                |                          |
| Exposure pathways and Potential exposure pathways relevant to the human receptors include i                                                                                                                                                                                                                                                                    | -                        |
| mechanisms dermal absorption and inhalation of dust (all contaminants) and vapour                                                                                                                                                                                                                                                                              | -                        |
| TRH, BTEX and naphthalene [a PAH compound]). The potential for expo                                                                                                                                                                                                                                                                                            |                          |
| typically be associated with the construction and excavation works, and                                                                                                                                                                                                                                                                                        |                          |
| of the site. Potential exposure pathways for ecological receptors includ                                                                                                                                                                                                                                                                                       | e primary                |
| contact and ingestion.                                                                                                                                                                                                                                                                                                                                         |                          |
| Exposure during future site use could occur via direct contact with soil i                                                                                                                                                                                                                                                                                     | in unpaved               |
| areas such as gardens, inhalation of airborne asbestos fibres and dust d                                                                                                                                                                                                                                                                                       |                          |
| disturbance, or inhalation of vapours within enclosed spaces such as bu                                                                                                                                                                                                                                                                                        |                          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                          | 0                        |
| The following have been identified as potential exposure mechanisms f contamination:                                                                                                                                                                                                                                                                           | for site                 |
| <ul> <li>Vapour intrusion into the proposed building (either from soil conta</li> </ul>                                                                                                                                                                                                                                                                        | mination or              |
| <ul> <li>vapour intrusion into the proposed building (either from soil contain<br/>volatilisation of contaminants from groundwater); and</li> </ul>                                                                                                                                                                                                            |                          |
| <ul> <li>Contact (dermal, ingestion or inhalation) with exposed soils in land</li> </ul>                                                                                                                                                                                                                                                                       | lecanod areas            |
| <ul> <li>Contact (dermal, ingestion or initiation) with exposed solis in land<br/>and/or unpaved areas, or with soils/dust during construction works</li> </ul>                                                                                                                                                                                                |                          |
|                                                                                                                                                                                                                                                                                                                                                                |                          |



# 4 SAMPLING, ANALYSIS AND QUALITY PLAN

# 4.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) have been developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

# 4.1.1 Step 1 - State the Problem

Potential sources of contamination/AEC have been identified that may pose a risk to human health and the environment. The sampling density associated with the previous ESA is not sufficient to facilitate characterisation of the site in the context of the proposed land use.

Investigation data is required to characterise the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the project team in the design and delivery of the project as well as by the consent authority in exercising its planning functions in relation to the approval of the development proposal under Chapter 4, Clause 4.6 of State Environmental Planning Policy (Resilience and Hazards) 2021<sup>3</sup> (formerly known as SEPP55).

# 4.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the assessment are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Did the site inspection, or does the historical information identify potential contamination sources/areas of environmental concern at the site?
- Are any of the laboratory results above the site assessment criteria?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is further investigation/remediation required?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

# 4.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing site information from the previous site investigations/assessments;
- Sampling of soil;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, and odours and staining;
- Laboratory analysis of soils, and fibre cement (if found in soil) for the CoPC identified in the CSM; and
- Field and laboratory QA/QC data.





<sup>&</sup>lt;sup>3</sup> State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)



# 4.1.4 Step 4 - Define the Study Boundary

The sampling will be confined to the site boundaries as shown on Figure 2 and will be limited vertically to maximum nominated sampling depths of approximately 0.5m into the natural soil (or prior refusal). The sampling is expected to be completed in November 2022 (temporal boundary).

# 4.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined below for each media. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid source-pathway-receptor (SPR) linkages.

For this investigation, the individual results will be assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values is not proposed for primary decision-making purposes as the sampling plan will not be probabilistic due to access constraints. Statistical analysis may be adopted to provide supporting lines of evidence for risk assessment purposes, if deemed appropriate.

# 4.1.5.1 Tier 1 Screening Criteria for Soil

# 4.1.5.1.1 Human Health

Soil data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013). Health Investigation Level (HILs) will be based on land use Type A as a conservative measure. Whilst this is overly conservative given the proposed use is for worker accommodation which is expected to include adults and would be expected to occur over a shorter duration than a typical residential-type scenario, the approach is considered reasonable compared to applying the other available Tier 1 HILs. Health Screening Levels (HSL) for asbestos will also be based on land use Type A.

HSLs for assessing hydrocarbon risks from vapour intrusion will be based on land use Type A/B and will be derived conservatively using a sand soil type and a depth interval of 0-1m for the initial data screening. These may be adjusted for depth and soil type where deemed appropriate.

HSLs for direct soil contact will be adopted based on the values presented in the CRC Care Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)<sup>4</sup>. Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) will also be considered following evaluation of human health and ecological risks, and risks to groundwater.

# 4.1.5.1.2 Environment (Ecological – terrestrial ecosystems)

Regarding the ecological screening criteria, the Ecological Investigation Levels (EIL) will be derived using the Ambient Background Concentration (ABC) from the document titled Trace Element Concentrations in Soils



<sup>&</sup>lt;sup>4</sup> Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document



from Rural and Urban Areas of Australia (1995)<sup>5</sup> and using site specific physiochemical data for soil pH, clay content and Cation Exchange Capacity (CEC) to select the Added Contaminant Limit (ACL) values in Schedule B(1) of NEPM (2013). NEPM (2013) recommends that ecological SAC are applied to the top 2m of soil.

# 4.1.5.2 Data Assessment

For this investigation, the following decision rules will apply:

- If all CoPC (with the exception of asbestos) concentrations are below the SAC, then the data will be compared directly to the SAC without statistical analysis;
- For soil data, if any individual CoPC (with the exception of asbestos) concentration is above the SAC, then statistical analysis will be undertaken. This will include calculation of the 95% upper confidence limit (UCL) value for the data set, with regards to the NEPM (2013) framework and other relevant guidelines made under the CLM Act 1997. The UCL will be considered acceptable where the UCL is below the SAC, the standard deviation of the data is less than 50% of the SAC and none of the individual concentrations are more than 250% of the SAC;
- If asbestos concentrations are encountered above the SAC or in the top 100mm of soil, then asbestos will be deemed a contaminant of concern for remediation purposes; and
- All results will be considered with regards to whether or not complete SPR-linkages exist or will exist in the context of the proposed development.

# 4.1.5.3 Quality Assurance/Quality Control (QA/QC)

Field QA/QC will include analysis of inter-laboratory duplicates (minimum of 5% of primary samples), intralaboratory duplicates (minimum of 5% of primary samples), and trip spike (for volatiles), trip blank (for volatiles) and rinsate (for volatiles) samples.

The suitability of the laboratory data is to be assessed against the laboratory QA/QC criteria which will be outlined in the laboratory reports. These criteria are developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory will be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, the most conservative concentration reported are to be adopted.

# 4.1.5.4 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are to be considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this will be provided.



<sup>&</sup>lt;sup>5</sup> Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission



# 4.1.6 Step 6 – Specify Limits on Decision Errors

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis ( $H_0$ ) is that the 95% UCL for the CoPC is greater than the SAC. The alternative hypothesis ( $H_A$ ) is that the 95% UCL for the CoPC is less than the SAC. Alternative considerations are made regarding asbestos based on an assessment of multiple lines of evidence.

Potential outcomes include Type I and Type II errors as follows:

- Type I error of determining that the soil is acceptable for the proposed land use when it is not (wrongly rejects true  $H_0$ ), includes an alpha ( $\alpha$ ) risk of 0.05; and
- Type II error of determining that the soil is unacceptable for the proposed land use when it is (wrongly accepts false  $H_0$ ), includes beta ( $\beta$ ) risk of 0.2.

Statistical analysis will not apply to asbestos, therefore these data will be assessed based on a multiple lines of evidence and risk-based approach.

Data Quality Indicators (DQI) for field and laboratory QA/QC samples are defined below. An assessment of the DQI's is to be made in relation to precision, accuracy, representativeness, completeness and comparability.

# **Field Duplicates**

Acceptable targets for precision of field duplicates will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

# Field/Trip Blanks and Rinsates

Acceptable targets for trip blank samples will be less than the PQL.

# Trip Spikes

Acceptable targets for trip spike samples will be 70% to 130%.

# Laboratory QA/QC

The suitability of the laboratory data will be assessed against the laboratory QA/QC criteria. These criteria are developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the typical limits is provided below: *RPDs* 

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics; and
- 60-140% recovery acceptable for organics.

# Surrogate Spikes

• 60-140% recovery acceptable for general organics.

# Method Blanks

• All results less than PQL.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence will be reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is to be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, we will adopt the most conservative concentration reported.

# 4.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the objectives. For this investigation, the design will be optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data will be collected. The sampling plan and methodology are outlined in the following sub-sections.

# 4.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology to be adopted for the DSI is outlined in the table below:

| Aspect              | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>Density | Samples for the investigation will be collected from a total of eight test pit locations. The proposed sample locations are shown on Figure 2 attached in Appendix A.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | The sampling plan has been designed to meet the minimum sampling density outlined in the NSW EPA Sampling Design Part 1 – Application (2022) <sup>6</sup> contaminated land guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | <ul> <li><u>Grid-based Sampling Locations</u></li> <li>Based on the site area of 875m<sup>2</sup>, eight grid-based sampling locations are proposed for the DSI which corresponds to a sampling density of approximately one sample per 109m<sup>2</sup>, and a square grid spacing of approximately 11m. Based on the above density, the following hotspot diameters have been calculated:</li> <li>Circular hotspot diameter with a 95% confidence level (K value of 0.59) – 6.6m; and</li> <li>Elliptical hotspot diameter with a 95% confidence level (K value of 0.9) – 10.07m along the</li> </ul> |
|                     | long dimension/axis and 5.03m along the short dimension/axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sampling Plan       | The sampling locations will be placed on a systematic plan with a grid spacing of approximately 11m between sampling locations. A systematic plan is considered suitable to identify hotspots to a 95% confidence level and calculate UCLs for specific data populations (UCLs will only be                                                                                                                                                                                                                                                                                                              |

Table 4-1: Soil Sampling Plan and Methodology



<sup>&</sup>lt;sup>6</sup> NSW EPA, (2022). Sampling design part 1 - application. (referred to as EPA Sampling Design Guidelines 2022)



| Aspect                                  | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | applied were appropriate and in accordance with the DQOs). However, we acknowledge that the                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | presence of underground services may result in samples being moved off the planned grid.                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | Soil sample collection will be limited to depths of approximately 0.5m into natural soils/bedrock unless staining or odours are encountered which may trigger deeper sampling into the natural ground.                                                                                                                                                                                                                                                                         |
| Set-out and                             | Sampling locations will be set out using a tape measure, set-out from the existing boundaries and                                                                                                                                                                                                                                                                                                                                                                              |
| Sampling<br>Equipment                   | site features. In-situ sampling locations will be checked for underground services by an external contractor prior to sampling.                                                                                                                                                                                                                                                                                                                                                |
|                                         | A borehole will be drilled at each location through the fill profile using hand equipment prior to excavation to check for services. Samples will not be obtained from the borehole.                                                                                                                                                                                                                                                                                           |
|                                         | Samples will be collected using a combination of excavator bucket and excavator fitted with an auger.                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | Soil samples will be obtained from the test pit walls, directly from the excavator bucket and / or directly from the auger.                                                                                                                                                                                                                                                                                                                                                    |
|                                         | JKG acknowledge that the use of an excavator and auger for soil sampling may result in some                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | loss of volatiles. However, this method is required to facilitate bulk sampling for asbestos.                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | Volatile soil concentrations identified in the wider hospital property previously were relatively low. On this basis, the test pit and auger sampling methods are considered to be appropriate.                                                                                                                                                                                                                                                                                |
| Sample<br>Collection and<br>Field QA/QC | The locations are to be logged to an appropriate standard in accordance with NEPM (2013) and all samples will be documented on the logs.                                                                                                                                                                                                                                                                                                                                       |
|                                         | Soil samples for contamination are to be collected from the fill and natural profiles based on field observations, and at least 0.5 into the natural soil profile. Samples for contamination analysis are to be placed in glass jars with plastic caps and Teflon seals with minimal headspace. Samples for asbestos analysis will be placed in zip-lock plastic bags.                                                                                                         |
|                                         | During sampling, soil at selected depths will be split into primary and duplicate samples for field QA/QC analysis. The splitting procedure will include alternate filling of the jars with soil.                                                                                                                                                                                                                                                                              |
| Field Screening                         | A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp will be used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs will be undertaken on soil samples using the soil sample headspace method. VOC data will be obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases. PID calibration records are maintained on file by JKG and are to be included in the report. |
|                                         | The field screening for asbestos quantification from the sampling locations will include the following:                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | <ul> <li>A bulk sample will be collected from fill at 1m intervals, or from each distinct fill profile to<br/>the extent possible;</li> </ul>                                                                                                                                                                                                                                                                                                                                  |
|                                         | Each bulk sample will be weighed using an electronic scale;                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | • Each bulk sample will be passed through a sieve with a 7.1mm aperture and inspected for                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | the presence of fibre cement. Alternatively, due to the cohesive nature of the soils, the samples may be placed on a contrasting support (blue tarpaulin) and inspected for the presence of fibre cement. Any soil clumps/nodules are to be disaggregated;                                                                                                                                                                                                                     |
|                                         | <ul> <li>The condition of fibre cement or any other suspected asbestos materials will be noted on<br/>the field records; and</li> </ul>                                                                                                                                                                                                                                                                                                                                        |





| Aspect                                             | Input                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | • If observed, any fragments of fibre cement in the sample will be collected, placed in a zip-<br>lock bag and assigned a unique identifier. Calculations for asbestos content will be<br>undertaken based on the requirements outlined in Schedule B1 of NEPM (2013).                                                                                                              |
| Decontami-<br>nation and<br>Sample<br>Preservation | Sampling personnel will use disposable nitrile gloves during sampling activities. Re-usable sampling equipment will be decontaminated using a potable water/decon solution (with rags and scrubbing brush), followed by a rinse with potable water.                                                                                                                                 |
|                                                    | Soil samples will be preserved by immediate storage in an insulated sample container with ice.<br>On completion of the fieldwork, the contamination samples may be stored temporarily in fridges<br>in the JKG warehouse before being delivered in the insulated sample container to a NATA<br>registered laboratory for analysis under standard chain of custody (COC) procedures. |

# 4.3 Laboratory Analysis and Analytical Rationale

Samples are to be analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. The laboratory details are provided in the table below:

| Samples                                                                                                                                                 | Laboratory                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| All primary soil samples and field QA/QC samples,<br>including soil intra-laboratory duplicates, trip blanks and<br>trip spikes, and the rinsate sample | Envirolab Services Pty Ltd NSW, NATA Accreditation<br>Number – 2901 (ISO/IEC 17025 compliance) |
| Inter-laboratory duplicates for soil samples                                                                                                            | Envirolab Services Pty Ltd VIC, NATA Accreditation<br>Number – 2901 (ISO/IEC 17025 compliance) |

An allowance has been made for the following analysis:

- Up to eight selected soil samples will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); PAHs; TRH; BTEX; OCP/OPP; PCBs; and asbestos (500ml quantification);
- Up to three selected soil samples will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); PAHs; TRH; and BTEX;
- Up to two selected fill/natural soil samples will be analysed for: pH; cation exchange capacity (CEC); and clay content (%);
- One representative fibre cement fragment, if found on or in soil, will be analysed for asbestos;
- TCLP leachability analysis for PAHs and selected metals; and
- Collection and analysis of QA/QC samples (including intra- and inter-laboratory duplicates, trip blank/spike, and a rinsate blank.

The soil analysis will generally be targeted on fill samples. Deeper samples may be analysed based on the results of the fill soils, or if other indicators such as staining or odours are encountered. A staged approach to soil sample analysis will be undertaken to allow for targeting areas based on the results of the initial analysis.



# 4.4 Reporting Requirements

A DSI report is to be prepared presenting the results of the investigation, in accordance with the NSW EPA Consultants Reporting on Contaminated Land, Contaminated Land Guidelines (2020)<sup>7</sup>.







<sup>&</sup>lt;sup>7</sup> NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines



# 5 LIMITATIONS

The report limitations are outlined below:

- JKG accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKG proposal; and terms of contract between JKG and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKG has not undertaken any verification process, except where specifically stated in the report;
- JKG has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKG accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKG have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKG should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.



# **Important Information About This Report**

These notes have been prepared by JKG to assist with the assessment and interpretation of this report.

#### The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKG proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKG will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKG to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

#### **Changes in Subsurface Conditions**

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

# This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

#### **Investigation Limitations**

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.





#### Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

#### Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

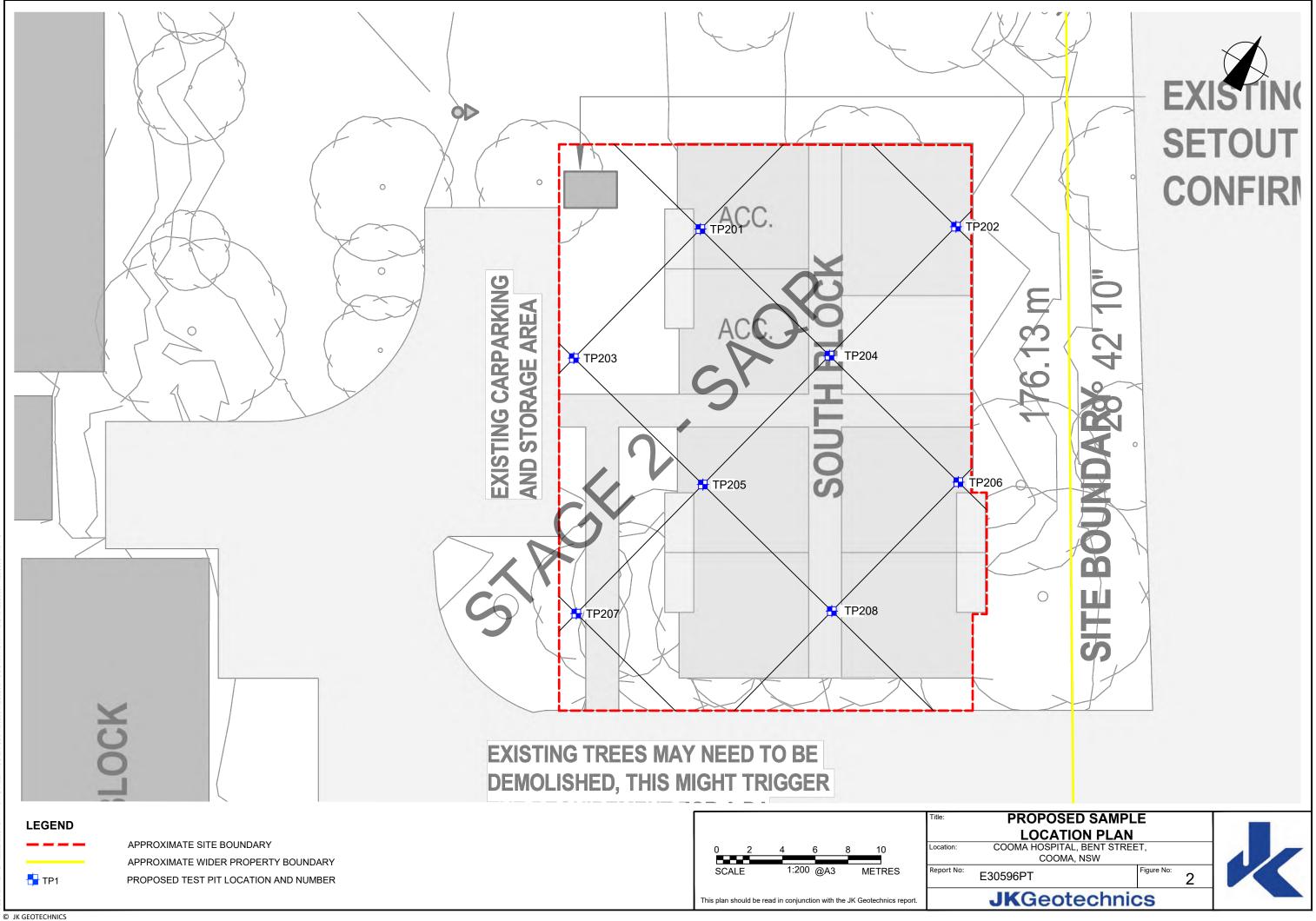
To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

#### **Read Responsibility Clauses Closely**

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

SAGY




Appendix A: Report Figures





This plan should be read in conjunction with the JK Geotechnics report.

© JK GEOTECHNICS





# Appendix B: Report Explanatory Notes







# QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)<sup>8</sup> methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)<sup>9</sup>. The NEPM (2013) is consistent with these documents.

# A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

# B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

# C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

# D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

# E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;



 <sup>&</sup>lt;sup>8</sup> US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 <sup>9</sup> Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide



- All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

#### F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

#### G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

#### H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

#### I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

# J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{(D1 + D2)/2}$ 





# Appendix C: Guidelines and Reference Documents





Contaminated Land Management Act 1997 (NSW)

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

NSW EPA, (2022). Sampling design part 1 – application, Contaminated Land Guidelines

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

SACE

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)





# **Appendix I: Guidelines and Reference Documents**





Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

